YAGO: A Large Ontology from Wikipedia and WordNet
Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum

Mazx-Planck-Institute for Computer Science, Saarbruecken, Germany

Abstract

This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived
from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million
entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as semantic relations between entities.
The facts for YAGO have been extracted from the category system and the infoboxes of Wikipedia and have been
combined with taxonomic relations from WordNet. Type checking techniques help us keep YAGO’s precision at 95%
— as proven by an extensive evaluation study. YAGO is based on a clean logical model with a decidable consistency.
Furthermore, it allows representing n-ary relations in a natural way while maintaining compatibility with RDFS. A

powerful query model facilitates access to YAGO’s data.

Key words: Ontologies, Information Extraction, Knowledge Representation

1. Introduction

Many applications in modern information tech-
nology utilize ontological background knowledge.
This applies above all to applications in the vi-
sion of the Semantic Web, but also to numerous
other application fields: machine translation [14]
and word sense disambiguation [10] exploit lexi-
cal knowledge, query expansion uses taxonomies
[34,27,52], document classification is combined
with ontologies [30], and question answering and
information retrieval [29] also rely on background
knowledge. Furthermore, ontological knowledge
structures play an important role in data cleaning
[15], record linkage (entity resolution) [17], and in-
formation integration in general [40]. In addition,
there are emerging trends towards entity- and fact-
oriented Web search and community management

Email addresses: suchanek @ mpii.de (Fabian M.
Suchanek), kasneci @ mpii.de (Gjergji Kasneci), weikum
@ mpii.de (Gerhard Weikum).

Preprint submitted to Elsevier

[6,12,13,16,21,32,35,37,38], which can build on rich
knowledge bases.

But the existing applications typically use only
a single source of background knowledge (mostly
WordNet [26] or Wikipedia). They could boost
their performance, if a huge ontology with knowl-
edge from several sources was available. Such an
ontology would have to be of high quality, with
accuracy close to 100 percent, i.e. comparable in
quality to an encyclopedia. It would have to com-
prise not only concepts in the style of WordNet, but
also named entities like people, organizations, geo-
graphic locations, books, songs, products, etc., and
also relations among these such as what-is-located-
where, who-was-born-when, who-has-won-which-
prize, etc. ! It would have to be easily re-usable and
application-independent. If such an ontology were
available, it could boost the performance of existing
applications and also open up the path towards new
applications in the Semantic Web era.

1 In this article, we mean by ”ontology” any set of facts
and/or axioms, comprising potentially both individuals and
concepts.

15 July 2008

1.1. Related Work

Knowledge representation is an old field in Al
and has provided numerous models from frames
and KL-ONE to recent variants of description log-
ics and RDFS and OWL (see [45] and [47]). Nu-
merous approaches have been proposed to create
general-purpose ontologies on top of these represen-
tations. One class of approaches focuses on extract-
ing knowledge structures automatically from text
corpora. These approaches use information extrac-
tion technologies that include pattern matching,
natural-language parsing, and statistical learning
[49,25,11,1,46,41,18]. These techniques have also
been used to extend WordNet by Wikipedia individ-
uals [44]. Two important projects along these lines
are KnowItAll [25] and TextRunner [4]. KnowItAll
aimed at extracting and compiling instances of a
given set of unary and binary predicate instances
on a very large scale — e.g., as many soccer players
as possible or almost all company/CEO pairs from
the business world. TextRunner has the even more
ambitious goal of extracting all instances of all
meaningful relations from Web pages, a paradigm
referred to as machine reading [24]. Recently this
approach has been further extended to include even
lifelong learning, by using the already compiled
knowledge to drive the strategies for acquiring new
facts [5]. Although automatic knowledge acquisi-
tion of this kind often exhibits results of remarkable
accuracy, the quality is still significantly below that
of a hand-crafted knowledge base. Furthermore,
these systems extract facts in a non-canonical form.
This means that different identifiers are used for
the same entity and there exist no clearly defined
relations. As a result, no explicit (logic-based)
knowledge representation model is available. Thus,
information-extraction approaches are still much
more suitable for high coverage and less attrac-
tive for applications that need consistent ontologies
(such as high-accuracy query processing, or even
automated reasoning).

Similar observations hold for the recently popu-
larized direction of mining taxonomies and seman-
tic relations from social-tagging platforms such as
del.icio.us and Web directories such as dmoz . org
(see, e.g., [22,31,23]). Notwithstanding the benefits
of these approaches, the inherent noise and lack of
explicit quality control for social tagging usually
lead to poor precision.

Because of the quality bottleneck, the most suc-
cessful and widely employed ontologies are still man-
made. These include WordNet [26], Cyc or Open-

Cyc [36], SUMO [39], and especially domain-specific
ontologies and taxonomies such as UMLS? or the
GeneOntology 2 . These knowledge sources have the
advantage of satisfying the highest quality expecta-
tions, because they are manually assembled. How-
ever, they are costly to assemble and continuous hu-
man effort is needed to keep them up to date. As
a result, no hand-crafted ontology knows the most
recent Windows version or the latest soccer star.

Lately, a new approach has entered the scene:
community-based ontology building. Inspired by
Wikipedia, the Freebase project* aims to construct
an ontology by inviting volunteers to contribute
facts. The usefulness of this approach will depend
on the acceptance of the project by the community.
Furthermore, effective ways of enforcing uniformity
across the ontology need to be found, as different
contributors may prefer different ways of modeling
reality.

The Semantic Wikipedia project [53] is a compa-
rable initiative. It invites Wikipedia authors to add
semantic tags to their articles in order to turn the
page link structure of Wikipedia into a huge seman-
tic network. Again, the usefulness of this approach
will depend on the acceptance of the project by the
community and on finding successful ways of quality
control.

Finally, a recently emerging approach is to au-
tomatically derive explicit facts from the semi-
structured part of Wikipedia. This direction in-
cludes DBpedia [2], Isolde [54], the work of Ponzetto
et al. [43], KYLIN [55], and also our own YAGO
project (with first results given in [51] and new
techniques presented in this article). The DBpe-
dia project was initially started by extracting facts
from the infoboxes of particular types of Wikipedia
articles (e.g., on people, cities, companies, music
bands, etc.). In contrast to YAGO, DBpedia does
not use defined relations with ranges and domains.
Rather, it uses the words from the infoboxes as
relation names. This way, DBpedia can extract a
wealth of facts from the infoboxes. As a drawback,
the same relationship may appear with different
names (e.g. length, length-in-km, length-km).
Thus, the consistency and accuracy of DBpedia
are unknown. DBpedia uses YAGO as a taxonomic
backbone to connect the facts to a coherent whole.

Ponzetto et al. use rich heuristics to derive a tax-
onomy from Wikipedia categories and links between

2 http://umlsinfo.nlm.nih.gov
3 http://www.geneontology.org
4 http://www.freebase.com

them. Isolde extracts class candidates from a spe-
cific domain corpus. It exploits Web sources such
as Wikipedia and Wiktionary to derive additional
knowledge about these candidates. Although both
of these approaches pursue similar goals as YAGO,
they lead to lower quality and more restricted scope.

Finally, KYLIN starts out with extraction tech-
niques on infoboxes, similar to those of DBpedia, but
then uses powerful learning techniques to automat-
ically fill in missing values in incomplete infoboxes.
The accuracy of the extraction is remarkable. Its
goal, however, is filling infoboxes rather than con-
structing an ontological knowledge base.

There is also a meta-approach to ontology con-
struction: The Linking Open Data Project [8],
launched by the W3C, aims to interlink existing
ontologies. It encourages people to make RDFS
data sets available online as Web services. On top
of these Web services, it establishes links between
equivalent concepts in different data sets. YAGO is
already part of this initiative.

1.2. Contributions and Outline

We present the ontology YAGO?®, which com-
bines high coverage with high quality. Its core is as-
sembled from one of the most comprehensive lex-
icons available today, Wikipedia. But rather than
using natural language processing on the articles of
Wikipedia, our approach builds on Wikipedia’s #n-
fobozxes and category pages. Infoboxes are standard-
ized tables that contain basic information about the
entity described in the article. For example, there
are infoboxes for countries, which contain the na-
tive name of the country, its capital and its size. As
shown in [2], infoboxes are much easier to parse and
exploit than natural language text. Category pages
are lists of articles that belong to a specific cate-
gory (e.g., Elvis is in the category of American rock
singers). These lists give us candidates for entities
(e.g. Elvis) candidates for concepts (e.g. IsA(Elvis,
rockSinger)) [33] and candidates for relations (e.g.
nationality(Elvis, American)). In an ontology, con-
cepts have to be arranged in a taxonomy to be of
use. The Wikipedia categories are indeed arranged
in a hierarchy, but this hierarchy is barely useful for
ontological purposes. For example, Elvis is in the
super-category named Grammy Awards, but Elvis
is a Grammy Award winner and not a Grammy
Award. WordNet, in contrast, provides a clean and

5 Yet Another Great Ontology

carefully assembled hierarchy of thousands of con-
cepts. But the Wikipedia concepts have no obvious
counterparts in WordNet.

We present techniques that link the two sources
with high accuracy. To the best of our knowledge,
our method is the first approach that accomplishes
this unification between WordNet and facts derived
from Wikipedia with a precision of 95%. This allows
the YAGO ontology to profit, on one hand, from
the vast amount of individuals known to Wikipedia,
while exploiting, on the other hand, the clean taxon-
omy of concepts from WordNet. Currently, YAGO
contains roughly 1.7 million entities and 15 million
facts about them.

We explain how we can enforce the high accuracy
of our extraction heuristics through type checking.
Type checking leverages the information that has
already been extracted to verify the plausibility of
newly extracted data. We show that type checking
can be used both in a reductive fashion (eliminating
facts that are implausible) and in an inductive fash-
ion (adding supplemental facts so that the ontology
becomes consistent). We have conducted an exten-
sive evaluation study, which proves that YAGO has
an overall precision of 95%.

YAGO is based on a data model that slightly ex-
tends RDFS. By means of reification (i.e., introduc-
ing identifiers for relation instances) we can express
relations between facts (e.g., which facts was found
on which Web site), n-ary relations (e.g. that Elvis
won the Grammy Award in 1967) and general prop-
erties of relations (e.g., transitivity or acyclicity).
We show that, despite its expressiveness, the YAGO
data model is still decidable and maintains compat-
ibility to RDFS. Furthermore, we present a query
language as a natural extension of our data model,
which allows querying reified facts.

YAGO was first presented in [51]. This article sig-
nifically extends the previous work by adding the ex-
ploitation of infoboxes, introducing quality control
techniques and defining a new query language. The
rest of this article is organized as follows. In Section
2 we introduce YAGO’s data model. Section 3 de-
scribes the sources from which the current YAGO
is assembled, namely Wikipedia and WordNet. In
Section 4 we explain the information extraction al-
gorithms behind YAGO. Section 5 presents an eval-
uation, a comparison to other ontologies, and sam-
ple queries on YAGO. We conclude with a summary
and an outlook in Section 6.

2. The YAGO Model

To accommodate the ontological data we already
extracted and to be prepared for future extensions,
YAGO must be based on a thorough and expressive
data model. The model must be able to express enti-
ties, facts, relations between facts and properties of
relations. The state-of-the-art formalism in knowl-
edge representation is currently the Web Ontology
Language OWL [47]. Its most expressive variant,
OWL-full, can express properties of relations, but is
undecidable. The weaker variants of OWL, OWL-
lite and OWL-DL, cannot express relations between
facts. RDFS, the basis of OWL, can express rela-
tions between facts, but provides only very primitive
semantics. For example, it does not know transitiv-
ity, which is crucial for partial orders such as SUB-
CLASSOF or LOCATEDIN. This is why we introduce
a slight extension of RDFS, the YAGO model. The
YAGO model can express relations between facts
and relations, while being at the same time sim-
ple and decidable. We will first describe the YAGO
model informally and then give a formal definition.

2.1. Informal Description

The YAGO model uses the same knowledge rep-
resentation as RDFS: All objects (e.g. cities, people,
even URLs) are represented as entities in the YAGO
model. Two entities can stand in a relation. For ex-
ample, to state that Elvis won a Grammy Award, we
say that the entity Elvis Presley stands in the HAS-
WONPRIZE relation with the entity Grammy Award.
We write

Elvis Presley HASWONPRIZE Grammy Award

Numbers, dates, strings and other literals are repre-
sented as entities as well. This means that they can
stand in relations to other entities. For example, to
state that Elvis was born in 1935, we write:

Elvis Presley BORNINYEAR 1935

Entities are abstract ontological objects, which are
language-independent in the ideal case. Language
uses words to refer to these entities. Words are en-
tities as well. This makes it possible to express that
a certain word refers to a certain entity, like in the
following example:

? Blvis”

MEANS Elvis Presley

This allows us to deal with synonymy and ambiguity.
The following line says that ”Elvis” may also refer
to the English songwriter Elvis Costello:

"FElvis” MEANS Elvis Costello

We use quotes to distinguish words from other en-
tities. Similar entities are grouped into classes. For
example, the class singer comprises all singers and
the class word comprises all words. Each entity is an
instance of at least one class. We express this by the
TYPE relation:

Elvis Presley TYPE singer

Classes are also entities. Thus, each class is itself
an instance of a class, namely of the class class©.
Classes are arranged in a taxonomic hierarchy, ex-
pressed by the SUBCLASSOF relation:

singer SUBCLASSOF person

Relations are entities as well. This makes it possible
to represent properties of relations (like transitivity
or subsumption) within the model. The following
line, e.g., states that the SUBCLASSOF relation is an
acyclic transitive relation (atr):

subclass0f TYPE atr

Acyclic transitive relations are of particular impor-
tance to YAGO because they are used to model par-
tial orders such as SUBCLASSOF and LOCATEDIN.
The triple of an entity, a relation and an entity is
called a fact. The two entities are called the argu-
ments of the fact.

In YAGO, we will store with each fact where it
was found. For this purpose, facts are given a fact
identifier. Deviating from RDFS, fact identifiers are
an integral part of the YAGO model. Each fact has a
fact identifier. For example, suppose that the above
fact (Elvis Presley, BORNINYEAR, 1935) had the
fact identifier #1. Then the following line says that
this fact was found in Wikipedia:

#1 FOUNDIN Wikipedia

We will refer to entities that are neither facts nor
relations as common entities. Common entities that
are not classes will be called individuals.

In summary, a YAGO ontology is basically a func-
tion that maps fact identifiers to fact triples. More
formally, a YAGO ontology can be described as a
reification graph.

6 Classes should be thought of as abstract identifiers rather
than sets.

2.2. Reification Graphs

A reification graph is defined over

— aset of nodes N. In YAGO, these are the common
entities.

— aset of edge identifiers I. In YAGO, these are the
fact identifiers.

— aset of labels L. In YAGO, these are the relation
names.

The reification graph is an injective total function

GNJ’L:IH(NUI)XLX(NUI).

We call the range of this function the edges of the
graph. Intuitively speaking, the edges of a reifica-
tion graph cannot only connect two nodes, but also
a node and an edge or even two edges. Each edge is
unique and has an identifier from I. Furthermore,
each edge has a label from L. Note that a reification
graph of the form G 71 : I — N x L x N defines
a usual directed multi-graph with nodes N and la-
beled edges range(Gn.1,1.)-

A YAGO ontology over a finite set of common
entities C, a finite set of relation names R and a
finite set of fact identifiers Z is a reification graph
over the set of nodes ZUC U R and the set of labels
R, i.e. an injective total function

Yy:IT—>(ZUCUR)XxR X (ZUCUR)

We write down a YAGO ontology (and in general
any reification graph) by listing the elements of the
function in the form

idy: argly rely arg2;
idy: argls rels arg2s

To simplify, we will omit the fact identifier if it oc-
curs nowhere else, assuming it to be an arbitrary
fresh identifier. Furthermore, we allow the following
shorthand notation

ida: (argly rely arg2y) rela arg2g

to mean

idy: argly rely arg2;
idy: idy rely arg2q

where id; is a fresh identifier. Assuming left-
associativity, the notation can be further simplified
to

idy : argly rely arg2, rely arg2s

For example, to state that Elvis’ birth date was
found in Wikipedia, we can simply write this frag-
ment of the reification graph as

Elvis BORNINYEAR 1935

2.3. n-ary Relations

Some facts require more than two arguments
(for example the fact that Elvis got the Grammy
Award in 1967). One common way to deal with this
issue is to use m-ary relations (as for example in
wonPrizelInYear (Elvis, GrammyAward, 1967)).
RDFS and OWL do not allow n-ary relations. There-
fore, the standard way to deal with this problem in
these formalisms is to introduce a new binary rela-
tion for each argument (e.g. WINNER,PRIZE, YEAR).
Then, an n-ary fact can be represented by a new
event entity (say, elvisGetsGrammy) that is linked
by these binary relations to all of its arguments:

GrammyAward PRIZE elvisGetsGrammy
Elvis WINNER elvisGetsGrammy
1921 YEAR elvisGetsGrammy

The YAGO model offers a more natural solution to
this problem: It is based on the assumption that for
each n-ary relation, a primary pair of its arguments
can be identified. For example, for the above WON-
PRIZEINYEAR-relation, the pair of the person and
the prize could be considered a primary pair. The
primary pair can be represented as a binary fact
with a fact identifier:

#1: Elvis HASWONPRIZE Grammy Award

All other arguments can be represented as relations
that hold between the primary fact and the other
arguments:

#2: #1 INYEAR 1967

With our simplified syntax, this can as well be writ-
ten as
HASWONPRIZE

Elvis Grammy Award

INYEAR 1967

2.4. Semantics

This section gives a model-theoretic semantics to
YAGO. We first prescribe that the set of relation
names R for any YAGO ontology must contain at

FOUNDIN Wikipedia

least the relation names type, subClass0f, domain,
range and subRelationOf. The set of common en-
tities C must contain at least the classes entity,
class, relation and atr (for acyclic transitive re-
lation). Furthermore, it must contain classes for all
literals as given in Figure 1.

Figure 1: The YAGO literal classes

Literal

—

Number String Timelnterval Quantity
Rational Word| Char Date | Year Duration |Weight

Integer URL TimePoint Length

NonNeginteger

For the rest of the article, we assume a given set
of common entities C and a given set of relations R.
The set of fact identifiers used by a YAGO ontology
y is implicitly given by Z = domain(y). To define the
semantics of a YAGO ontology, we consider the set
of all possible facts F = (ZUCUR) x R x (ZUCUR).
We define a rewrite system — C P(F) x P(F), i.e.
— reduces one set of facts to another set of facts.
We use the shorthand notation {fi,..., fn} — f to
say that

FUu{fi,...fo} = FU{f1,..., fnt U{f}

for all F* C F, i.e. if a set of facts contains the facts
f1,---, fn,then the rewrite rule adds f to this set. Our
rewrite system contains the following (aziomatic)
rules:

(domain, RANGE, class)

(domain, DOMAIN, relation)

(range, DOMAIN, relation)

(range, RANGE, class)

(subClassOf, TYPE, atr)

(subClass0f, DOMAIN, class)
(subClass0f, RANGE, class)

(type, RANCE, class)

(subRelationOf, TYPE, atr)
(subRelationOf, DOMAIN, relation)
(subRelationOf, RANGE, relation)

L A A

The first rule, e.g., says that the range of the relation
DOMAIN is the class class, i.e. the second argument
of a DOMAIN fact will always be a class. In addition,
the rewrite system contains for the literal classes the
rules

) — (X,suBCLASSOF,Y)

for each edge X — Y in Figure 1.

Furthermore, it contains the following rules for all
rry, e € R, x,y,¢,c1,c0 € ZUCUTR, r1 # TYPE,
rog # SUBRELATIONOF, r # SUBRELATIONOF,
r # TYPE, ¢ # atr, ¢ # atr:

(1) {(r1,SUBRELATIONOF, r3), (z,71,Yy)} — (z,72,y)
(2) {(r,(TYPE,) atr), (z,7,9), (y, 7, 2)}
(3) {(r, DOMAIN, ¢), (&, 7, y)} = (2, TYPE,)
(4) {(r,RANGE, ¢), (z,7,y)} — (y, TYPE,)
(5) {(x, TYPE, ¢1), (¢1, SUBCLASSOF, c2)}
— (x, TYPE, ¢2)

THEOREM 1: [Convergence of —]
Given a set of facts F C F, the largest set S

with F —* S is finite and unique.

The proof of Theorem 1 is given in the Appendix A.
Given a YAGO ontology ¥, the rules of — can be ap-
plied to its set of facts, range(y). We call the largest
set that can be produced by applying the rules of
— the set of derivable facts of y, D(y). Two YAGO
ontologies y1, y2 are equivalent if the fact identifiers
in Yo can be renamed by a bijective substitution so
that

(w1 Cy2 V y2Cwy1) A D(y1) = D(y2)

The deductive closure of a YAGO ontology vy is
computed by adding the derivable facts to y. Each
derivable fact (a,r,b) needs a new fact identifier,
which is just f, 5. Using a relational notation for
the function y, we can write this as

y* =y U {(fa,r,ba(avrv b)) |
(a,r,0) € D(y) \ range(y) }

A structure for a YAGO ontology y is a triple of

— a set U (the universe)
— afunction D: ZUCUR — U (the denotation)
— a function £ : D(R) — U x U (the extension

function)

As in RDFS, a YAGO structure needs to define the
extensions of the relations by the extension function
£. € maps the denotation of a relation symbol to a
relation on universe elements. We define the inter-
pretation ¥ with respect to a structure < U, D, E >
as the following relation:

U= {(e1,m,e2) | (Dler), Dle2)) € E(D(r))}

We say that a fact (eq,r, e2) is true in a structure,
if it is contained in the interpretation. A model of a
YAGO ontology y is a structure such that

(i) all facts of y* are true in the structure
(1) if ¥(x, TYPE, string) for some z, then D(x) =

x
(iii) if ¥(r, TYPE, atr) for some 7, then there ex-
ists no x such that ¥(z,r, x)

A YAGO ontology y is called consistent iff there
exists a model for it. Obviously, a YAGO ontology
is consistent iff

Az,r: (r,TYPE,atr) € D(y)
A (z,r,x) € D(y)

Since, by Theorem 1, the deductive closure of a
YAGO ontology can be computed by applying the
rules (1)-(5) finitely often, we have the following
corollary of Theorem 1:

COROLLARY 1: [Decidability]
The consistency of a YAGO ontology is decid-
able.

A base of a YAGO ontology y is any equivalent
YAGO ontology b with b C y. A canonical base of y
is a base so that there exists no other base with less
elements.

THEOREM 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO on-
tology is unique.

The proof of Theorem 2 is given in the Appendix
B. In fact, the canonical base of a YAGO ontol-
ogy can be computed by greedily removing derivable
facts from the ontology in any order. This makes the
canonical base a natural choice to efficiently store a
YAGO ontology.

2.5. Reification and Semantics

The YAGO model allows making statements
about facts. However, it does not allow curtailing
the validity of facts: A model for the ontology must
make every fact true, regardless of whether the
fact is an argument of another fact. This has sev-
eral consequences. First, it is not possible to state
in YAGO that a certain fact is false. In any case,
YAGO does not provide the predefined vocabulary
for such a statement and it would entail immediate
undecidability. Second, the primary pair of an n-ary

relation will always be true in a model of the ontol-
ogy. Consider, for example, the fact that Elvis was
a singer from 1950 to 1977. In the YAGO model,
this fact could be expressed as

#1: Elvis TYPE
#2: #1 DURING

singer
1950-1977

If the TYPE relation denotes the relation "z is a y”,
then each model will contain the fact that Elvis is a
singer — even though in the intended interpretation
that holds only from 1950 to 1977. Thus, a more ad-
equate denotation for the TYPE relation would ac-
tually be "z is or was a y”. Another consequence of
the YAGO model is that intentional predicates like
BELIEVESTHAT or SAYSTHAT are not possible, be-
cause all arguments to these relations would become
true in the model. It does, however, allow using suc-
cess verbs such as SEESTHAT or KNOWSTHAT, the
arguments of which are true by intention.

These properties of the YAGO model may be con-
sidered limiting, but they guarantee the decidability
of the model.

2.6. Data Types

The YAGO model treats literals (such as strings
or numbers) as proper entities. Literals are instances
of literal classes (or data types). RDFS and OWL
use the data types defined by XML Schemal7].
These data types, however, are more machine-
oriented and not always semantically plausible. For
example, XML Schema does not know the data type
rationalNumber, but only the disjunct data types
float and double. This is why the YAGO model
comes with its own data types (see Figure 1), which
follow the SUMO ontology [39]. YAGO sees, e.g,
integer as a subclass of rational, because each
integer number is a rational number. Besides num-
bers, YAGO also knows strings. These are charac-
terized by mapping to themselves in any denotation.
timeIntervals are specific periods of time, such as
the year 2007 or the 8th of January 1935.

The class quantity contains values that have a
physical dimension such as length or weight. These
values have units, such as meter or kilogram. In
RDFS, quantities are usually represented by an
anonymous entity (a blank node). This entity is
connected by an RDF:VALUE edge to the numerical
value and by a UNIT edge to the unit of measure-
ment, e.g. as follows:

_iX RDF:VALUE 1000
_:x UNIT gram

As a consequence, the very same quantity has to be
represented as two blank nodes, if measured with
two different units. The YAGO model, in contrast,
can express that the very same quantity has two
different values if measured in different units:

#1: 1000g HASVALUE 1000

#2: #1 INUNIT 7gram”

#3: 1000g HASVALUE 1

#4: #3 INUNIT "kilogram”

In YAGO, we use the ISO units and formats both
for the HASVALUE facts and as quantity identifiers.

2.7. Relation to Other Formalisms

The YAGO model is basically an extension of
RDFS. It maintains the semantics of the RDFS re-
lations DOMAIN, RANGE and TYPE. It also main-
tains the RDF'S relations SUBCLASSOF and SUBRE-
LATIONOF (SUBPROPERTYOF in RDFS). However,
the YAGO model adds acyclicity to these relations.
RDFS, in contrast, does not know the concept of an
acyclic relation. This entails that the relation ATR
can be defined and used, but that RDFS would not
know its semantics.

Another difference to RDF'S, discussed in the pre-
ceding section, is the use of semantic data types in
YAGO.

Just as RDFS, the YAGO model uses fact iden-
tifiers to express facts about facts. In the YAGO
model, fact identifiers are an integral part of the
model. In RDFS, in contrast, fact identifiers are
constructed by characterizing the fact through
its relation and its arguments. For example, to
talk about the fact (Elvis, BORNINYEAR,1935),
RDFS would create a new entity for the fact (say,
elvisFact) and characterize it as follows:

elvisFact RDF:RELATION BORNINYEAR
elvisFact RDF:SUBJECT Elvis
elvisFact RDF:OBJECT 1935
elvisFact RDF:TYPE statement

This process is called reifying the fact. Then,
elvisFact can be used as an argument in other
facts. Different from the YAGO model, though, the
reified fact does not become part of the ontology —
let alone the model. In RDFS, arbitrary facts can

be used as arguments, even ones that are false in
the model.

Thus, to model YAGQO’s reification, one would
need to reify each fact of the ontology in the above
manner so that each fact is present both in the on-
tology and as a reified fact. To simplify this process,
the XML syntax of RDFS allows triple identifiers.
If a fact of the ontology is equipped with a triple
identifier, that fact is automatically reified. This
allows us to map a YAGO ontology into RDFS.
The following excerpt shows how the sample fact of
Section 2.3 can be represented in RDFS. Each fact
of YAGO becomes a triple in RDFS with a triple
identifier.

<rdf:Description
rdf :about="http://mpii.de/yago#Elvis">
<yago:hasWonPrize rdf:ID="£f1"
rdf :resource=
"http://mpii.de/yago#GrammyAward">
</rdf :Description>
<rdf:Description
rdf :about="http://mpii.de/yago#f1">
<yago:inYear rdf:ID="£2">1967</yago:inYear>
</rdf:Description>

YAGO uses fact identifiers, but it does not have
built-in relations to make logical assertions about
facts (e.g. it does not allow saying that a fact is false).
If one relies on the denotation to map a fact identifier
to the corresponding fact element in the universe,
one can consider fact identifiers as simple individu-
als. This abandons the syntactic link between a fact
identifier and the fact. In return, it opens up the pos-
sibility of mapping a YAGO ontology to an OWL
ontology under certain conditions. OWL has built-
in counterparts for almost all built-in data types,
classes, and relations of YAGO. The only concept
that does not have an exact built-in counterpart is
ATR. However, this is about to change. OWL is cur-
rently being refined to its successor, OWL 1.1[42].
The extended description logic SROZQ [28], which
has been adopted as the logical basis of OWL 1.1,
allows expressing irreflexivity and transitivity. This
allows defining acyclic transitivity, even though suB-
CLASSOF and SUBPROPERTYOF remain reflexive
and transitive and hence not acyclic. We plan to
investigate the relation of YAGO and OWL, once
OWL 1.1 has been fully established.

2.8. Query Language

To demonstrate the use of YAGO, we present a
query language for reification graphs. A pattern for
a reification graph Gy, over a set of variables
V,VN(NUIUL) = (, is a reification graph over the
set of nodes N UV, the set of identifiers I UV and
the set of labels L U V. In the following, we denote
elements from V' by symbols that carry a question
mark (such as ?7x). A matching of a pattern P for a
graph G is a substitution 0 : V. — N U T U L, such
that o(P) C G. o(P) is called a match.

Our syntax simplifications from section 2.2 can be
transferred to patterns: Each implicit fact identi-
fier becomes a fresh variable. Thus, e.g., the query
?When did Elvis win the Grammy Award?” can be
formulated as

HASWONPRIZE

Elvis Grammy Award

INYEAR 7x
which is shorthand for

?il: Elvis
7i2: 7il

HASWONPRIZE Grammy Award
INYEAR 7x

A match of that pattern for the ontology would map
the variables to entities such that the pattern be-
comes a subgraph of the ontology.

Usually, each entity that appears in the query
also has to appear in the ontology. If that is not the
case, there is no match. However, we may want to
allow a query such as ” Which singers were born after
1930?27, even if 1930 does not appear in the ontol-
ogy. We cannot simply add all existing literals to the
YAGO ontology because a YAGO ontology has to
be finite. Hence, we introduce filter relations (such
as AFTER), which are not part of the match, but
are evaluated on the match as filters. Technically, a
filter relation is a decidable function that maps two
literals to either O or 1. Then, a filter pattern P for
a reification graph Gy 1 r over a set of literals L, a
set of variables V,VN(NUIURUL) = () and a set
of filter relations F, is a reification graph over the
set of nodes N UV U L, the set of identifiers I U V'
and the set of labels RU V U F. For example, the
following is a filter pattern over the set of literals
{1930} and the set of filter relations {AFTER}:

?il: ?x TYPE singer
7i2: ?x BORNINYEAR 7y
?7i3: 7y AFTER 1930

A matching for a filter pattern is a matching o for
the pattern P\ {(i, (a1,7,a2))|r € F}, such that
V(i (a1,7,a2)) € P,r € F : r(0(a1),0(az)) = 1. In
the example, a matching would have to bind ?x and
7y in such a way that AFTER(?y, 1930) = 1. 7i3 is
left unbound. Then, a match for a filter pattern is a
matching applied to the pattern, i.e. in our case e.g.

#1: Elvis TYPE singer
#2: Elvis BORNINYEAR 1935
?i3: 1935 AFTER 1930

See Section 4.4 for implementation issues.

3. Sources for YAGO
3.1. WordNet

WordNet is a semantic lexicon for the English lan-
guage developed at the Cognitive Science Labora-
tory of Princeton University[26]. WordNet distin-
guishes between words as literally appearing in texts
and the actual senses of the words. A set of words
that share one sense is called a synset ” . Thus, each
synset identifies one sense (i.e., semantic concept).
Words with multiple meanings (ambiguous words)
belong to multiple synsets. As of the current version
3.0, WordNet contains 82,115 synsets for 117,798
unique nouns. (Wordnet also includes other types of
words like verbs and adjectives, but we consider only
nouns in this article.) WordNet provides relations
between synsets such as hypernymy/hyponymy (i.e.,
the relation between a sub-concept and a super-
concept) and holonymy/meronymy (i.e., the relation
between a part and the whole); for this article, we
focus on hypernyms/hyponyms. Conceptually, the
hypernymy relation in WordNet spans a directed
acyclic graph (DAG) with a single root node called
entity.

3.2. Wikipedia

Wikipedia is a multilingual, Web-based encyclo-
pedia. It is written collaboratively by volunteers
and is available for free. We downloaded the En-
glish version of Wikipedia in November 2007, which
comprised 2,000,000 articles at that time. Each
Wikipedia article is a single Web page and usually
describes a single topic or entity.

7 There exist synsets, though, that represent different mean-
ings, but contain the same words.

The majority of Wikipedia pages have been manu-
ally assigned to one or multiple categories. The page
about Elvis Presley, for example, is in the categories
American rock singers, 1935 births, and 34 more.

Furthermore, a Wikipedia page may have an in-
fobox. An infobox is a standardized table with infor-
mation about the entity described in the article. For
example, there is a standardized infobox for people,
which contains the birth date, the profession, and
the nationality. Other widely used infoboxes exist
for cities, music bands, companies etc.

For our information extraction, we use the XML
dump of Wikipedia. It is approximately 3 Gigabytes
large and stores the articles in the original Wiki
markup language.

4. Information Extraction

The construction of the YAGO ontology takes
place in two stages: First, different heuristics are
applied to Wikipedia to extract candidate entities
and candidate facts. This stage also establishes the
connection between Wikipedia and WordNet. Then,
quality control techniques are applied. We will now
explain these two steps in detail and afterwards ex-
plain how YAGO is stored.

4.1. Wikipedia Heuristics

Since Wikipedia knows far more individuals than
WordNet, the individuals for YAGO are taken from
Wikipedia. Each Wikipedia page title is a candidate
to become an individual in YAGO. For example, the
page title ” Albert Einstein” is a candidate to be-
come the individual Albert Einstein in our ontol-
ogy. The page titles in Wikipedia are unique. Our
algorithm parses the XML dump of Wikipedia and
applies 4 different types of heuristics to the articles.

4.1.1. Infobox Heuristics

Attributes and Values. A Wikipedia article
may contain an infobox (see Figure 2). It is well-
known [2] that an infobox is a rich source of facts
about the article entity. Each row in the infobox
table contains an attribute and a value. For exam-
ple, an infobox on the page of Elvis Presley may
contain the attribute Born with the value January
8, 1935. We have identified 170 highly frequent
attributes. For each of these attributes, we have
manually designed a YAGO relation, the target
relation. For example, for the attribute Born, we
introduced the relation BIRTHDATE with domain

10

person and range timeInterval. Some attributes
use the same relation. For example, both Born and
Birthday map to the relation BIRTHDATE. In prin-
ciple, each row of the infobox will generate one fact.
Its first argument is the article entity, its relation is
determined by attribute and its second argument is
the value of the attribute. However, we map some
attributes to the inverse of a relation. For exam-
ple, the attribute official name has as its value the
official name of the article entity. But instead of
generating the fact (entity, HASOFFICIALNAME,
official name), our algorithm rather generates the
fact (official name, MEANS, entity). For the purpose
of the knowledge extraction, we call these attributes
tnverse attributes.

Figure 2: A Wikipedia Infobox

Elvis Presley

Elvis in 1970

Background information
Birthname Elvis Aaron Preslé%l
Also known as Elvis

January 81935

Born T
Tupelq Mississippi
Origin Memphis Tennessee
Died August 161977 (aged 42)
! Memphis, Tennessee
Rockabilly, Rock and RollGospe,
Genre(s) Y, | pel

Blues Country
Occupation(s) Singer Actor
Instrument(s) Vocals Guitar, Piano

Yearsactive 1954-1977
Label(s) Sun RCA
Website Elvis.com

Some attributes may have multiple values. For
example, a person may have multiple children.
In this case, one row of the infobox will generate
multiple facts — one HASCHILD fact for each child.

Again other attributes do not concern the article
entity, but another fact. For example, the attribute
GDPasOf gives the year in which the gross do-
mestic product (GDP) of a country was computed.
In this case, the algorithm does not generate the
fact (country,GDPASOF,year), but rather the fact
(id,DURING,year), where id is the id of the pre-
viously established fact (country,HASGDP, gdp).
Thus, we get the following fact (in shorthand nota-
tion):

country HASGDP g¢gdp DURING year

Sometimes, the meaning of the attribute depends
on the type of infobox. For example, the length of
a car is an extent in space, whereas the length of a
song is a duration. Hence we allow ambiguous at-
tributes to be qualified by the type of the infobox
(in this example we distinguish car infoboxes and
song infoboxes). In summary, an infobox heuristic
is a manually established mapping from a (possi-
bly qualified) attribute to the target relation that
stores whether the attribute is an inverse attribute,
whether it allows multiple values and whether it is
about another fact.

Parsing. When our algorithm finds an infobox,
it walks through all of its attributes. If a heuristic
is available for the attribute, the algorithm tries to
parse the value of the attribute as an instance of
the range of the target relation. For example, the
attribute Birth date has the target relation BIRTH-
DATE. Its range is timeInterval. Hence the parser
tries to parse the value of the attribute as a time
interval (i.e. as a year or a date expression). We
use the parser from [50] to parse literals of differ-
ent types. This parser uses regular expressions to
parse numbers, dates and quantities. It also normal-
izes units of measurement to ISO units. If the range
of the target relation is not a literal class (but, e.g.
the class person), the parser expects a Wikipedia
entity as value and hence tries to find a Wikipedia
link. If the parse fails, the attribute is ignored. In-
verse attributes and attributes with multiple values
are handled accordingly. Last, the type of the in-
fobox (e.g. city infobox or person infobox) produces
a candidate fact that establishes the article entity
as an instance of the respective class.

There is one exception: For each country,
Wikipedia contains a page on its economy (e.g. a
page with the title ” Economy of the United States”).
In these cases, the parser is configured to attach
the extracted facts not to an entity economy of the
United States but rather to the country itself.

11

4.1.2. Type Heuristics

Wikipedia Categories. To establish for each in-
dividual its class, we exploit the category system of
Wikipedia. There are different types of categories:
Some categories, the conceptual categories, indeed
identify a class for the entity of the page (e.g. Albert
Einstein is in the category Naturalized citizens of
the United States). Other categories serve adminis-
trative purposes (e.g. Albert Einstein is also in the
category Articles with unsourced statements), oth-
ers yield relational information (like 1879 births)
and again others indicate merely thematic vicinity
(like Physics).

Conceptual Categories. Only the conceptual
categories are candidates for serving as a class for
the individual. The administrative and relational
categories are very few (less than a dozen) and can
be excluded by hand. To distinguish the conceptual
categories from the thematic ones, we employ a shal-
low linguistic parsing of the category name (using
the Noun Group Parser of [50]). For example, a cat-
egory name like Naturalized citizens of the United
States is broken into a pre-modifier (Naturalized),
a head (citizens) and a post-modifier (of the United
States). Heuristically, we found that if the head of
the category name is a plural word, the category
is most likely a conceptual category. We used the
Pling-Stemmer from [50] to identify and stem plu-
ral words. This gives us a (possibly empty) set of
conceptual categories for each Wikipedia page. Con-
veniently, articles that do not describe individuals
(like hub pages) do not have conceptual categories.
Thus, the conceptual categories yield not only the
TYPE relation, but also, as its domain, the set of in-
dividuals. It also yields, as its range, a set of classes.

The Wikipedia Category Hierarchy. The
Wikipedia categories are organized in a directed
acyclic graph, which yields a hierarchy of cate-
gories. This hierarchy, however, reflects merely the
thematic structure of the Wikipedia pages (e.g., as
mentioned in the introduction, Elvis is in the cat-
egory Grammy Awards). Thus, the hierarchy is of
little use from an ontological point of view. Hence
we take only the leaf categories of Wikipedia and
ignore all higher categories. Then we use WordNet
to establish the hierarchy of classes, because Word-
Net offers an ontologically well-defined taxonomy
of synsets.

Integrating WordNet Synsets. Each synset of
WordNet becomes a class of YAGO. Care is taken to
exclude the proper nouns known to WordNet, which
in fact would be individuals (Albert Einstein, e.g.,
is also known to WordNet, but excluded). There

are roughly 15,000 cases, in which an entity is con-
tributed by both WordNet and Wikipedia (i.e. a
WordNet synset contains a common noun that is
the name of a Wikipedia page). In some of these
cases, the Wikipedia page describes an individual
that bears a common noun as its name (e.g. Time
exposure is a common noun for WordNet, but an al-
bum title for Wikipedia). In the overwhelming ma-
jority of the cases, however, the Wikipedia page is
simply about the common noun (e.g. the Wikipedia
page Physicist is about physicists). To be on the safe
side, we always give preference to WordNet and dis-
card the Wikipedia individual in case of a conflict.
This way, we lose information about individuals that
bear a common noun as name, but we ensure that
all common nouns are classes and no entity is dupli-
cated.

Connecting Wikipedia and WordNet. The
SUBCLASSOF hierarchy of classes is taken from the
hyponymy relation from WordNet: A class is a sub-
class of another one, if the first synset is a hyponym
of the second. Now, the lower classes extracted
from Wikipedia have to be connected to the higher
classes extracted from WordNet. For example, the
Wikipedia class American people in Japan has to
be made a subclass of the WordNet class person.
To this end, we use the following algorithm:

Function wiki2wordnet(c)

Input: Wikipedia category name ¢
Output: WordNet synset

1 head =headCompound(c)

2 pre =preModifier(c)

3 post =postModifier(c)

4 head =stem(head)

5 If there is a WordNet synset s for pre + head
6 return s

7 If there are WordNet synsets s1, ...s, for head
8

9

1

return s,
0 fail

We first determine the head compound, the pre-
modifier and the post-modifier of the category name
(lines 1-3). For the Wikipedia category American
people in Japan, these are ” American”, ”people”
and ”in Japan”, respectively. We stem the head
compound of the category name (i.e. people) to its
singular form (i.e. person) in line 4. Then we check
whether there is a WordNet synset for the con-
catenation of pre-modifier and head compound (i.e.
American person). If this is the case, the Wikipedia
class becomes a subclass of the WordNet class (lines

(ordered by their frequency for head)

12

5-6). If this is not the case, we exploit that the
Wikipedia category names are almost exclusively
endocentric compound words (i.e. the category
name is a hyponym of its head compound, e.g.
” American person” is a hyponym of ”person”). The
head compound (”person”) has to be mapped to a
corresponding WordNet synset (s1, ..., s, in line 7).
This mapping is non-trivial, since one word may
refer to multiple synsets in WordNet. We experi-
mented with different disambiguation approaches.
Among others, we mapped the co-occurring cate-
gories of a given category to their possible synsets
as well and determined the smallest subgraph of
synsets that contained one synset for each category.
These approaches lead to non-satisfactory results.

Finally, we found that the following solution
works best: WordNet stores with each word the
frequencies with which it refers to the possible
synsets. We found out that mapping the head
compound simply to the most frequent synset
(s1) yields the correct synset in the overwhelming
majority of cases. This way, the Wikipedia class
American people_in_Japan becomes a subclass of
the WordNet class person/human. It would be pos-
sible to introduce another intermediate class, so that
American_people_in_Japan becomes a subclass
of American_person, which is again a subclass of
person/human. Since there are only very few cases
in which a category name has both a pre-modifier
and a post-modifier, we waived this possibility.

Exceptions. There were only around two dozen
prominent cases in which the disambiguation of the
Wikipedia category names failed. For example, all
categories with the head compound ”capital” in
Wikipedia mean the ”capital city”, but the most
frequent sense in WordNet is ”financial asset”. We
corrected these cases manually. In summary, we
obtain a complete hierarchy of classes, where the
upper classes stem from WordNet and the leaves
come from Wikipedia.

4.1.3. Word Heuristics

Exploiting WordNet Synsets. Wikipedia and
WordNet also yield information on word meaning.
WordNet for example reveals the meaning of words
by its synsets. For example, the words ”urban cen-
ter” and “metropolis” both belong to the synset
city. We leverage this information in two ways.
First, we introduce a class for each synset known to
WordNet (i.e. city). Second, we establish a MEANS
relation between each word of synset and the corre-
sponding class (i.e. ("metropolis”, MEANS, city)).

Exploiting Wikipedia Redirects. Wikipedia
contributes names for the individuals by its redirect
system: a Wikipedia redirect is a virtual Wikipedia
page, which links to a real Wikipedia page. These
links serve to redirect users to the correct Wikipedia
article. For example, if the user typed ”Einstein,
Albert” instead of ” Albert Einstein”, then there is
a virtual redirect page for ”Einstein, Albert” that
links to ” Albert Einstein”. We exploit the redirect
pages to give us alternative names for the entities.
Each redirect gives us one MEANS fact (e.g. ("Ein-
stein, Albert”, MEANS, Albert Einstein)).

Parsing Person Names. The YAGO hierarchy
of classes allows us to identify individuals that are
persons. If the words used to refer to these individu-
als match the common pattern of a given name and
a family name, we extract the name components and
establish the relations GIVENNAMEOF and FAMI-
LYNAMEOF. For example, we know that Albert
Einstein is a person, so we introduce the facts
("Einstein”, FAMILYNAMEOF, Albert Einstein)
and (" Albert”, GIVENNAMEOF, Albert Einstein).
Both are subrelations of MEANS, so that the family
name ”Einstein”, for example, also means Albert
Einstein. We used the Name Parser from [50] to
identify and decompose the person names.

4.1.4. Category Heuristics

Relational Categories. Relational Wikipedia
categories give valuable information about the arti-
cle entity. For example, if a page is in the category
Rivers in Germany, then we know that the article
entity is LOCATEDIN Germany. Category informa-
tion is very useful, because not every article has an
infobox, but most articles have categories. We de-
signed simple category heuristics to exploit the cat-
egory names. Each heuristic is basically a pair of a
regular expression (e.g. ”Mountains|Rivers in (.*¥)”)
and a target relation (e.g. LOCATEDIN). If a cate-
gory name matches the regular expression, a new
fact is added, where the first argument is the article
entity, the relation is the target relation and the sec-
ond argument is the string captured by the brackets
of the regular expression. If, e.g., the Rhine is in the
category Rivers in Germany, then we add the fact
(Rhine,LOCATEDIN,Germany). Table 1 shows some
of our category heuristics.

Since all candidate facts will be type checked, we
can be generous with our heuristics. For example,
the last two heuristics will extract ” American No-
bel Prize” and ” Nobel Prize”, respectively, from the
category name ” American Nobel Prize winners”. Of
course, " Nobel Prize” is the correct choice, because

13

the category says that the prize winner is American,
not the prize. At this stage, however, we keep both
candidates and rely on the type check to sort out
the wrong one (see Section 4.2.2).

Table 1: Some Category Heuristics

Regular Expression Relation
([0-9]{3,4}) births BORNONDATE
([0-9]{3,4}) deaths DIEDONDATE
([0-9]{3,4}) establishments |ESTABLISHEDONDATE
([0-9]{3,4}) books|novels |WRITTENONDATE
Mountains|Rivers in (.*) LOCATEDIN
Presidents|Governors of (.*)|POLITICIANOF

(-*) winners HASWONPRIZE
[A-Za-z]+ (.*) winners HASWONPRIZE

Language Categories. There are some special
categories that indicate the name of the article en-
tity in other languages. For example, the city of
London is in the special category fr:Londres, mean-
ing that London is called ”Londres” in French. Our
algorithm maps the language prefix ”fr” to the ap-
propriate language entity (French) and adds the
following candidate fact:

ISCALLED ”Londres”
INLANGUAGE French

London

4.2, Quality Control

Our goal is to deliver an ontology of high quality.
For this purpose, we developed rigorous quality con-
trol mechanisms. Canonicalization makes each fact
and each entity reference unique. As a result, an en-
tity is always referred to by the same identifier in
all facts in YAGO. Type Checking eliminates indi-
viduals that do not have a class. It also eliminates
facts that do not respect the domain and range con-
straints of their relation. As a result, an argument
of a fact in YAGO is always an instance of the class
required by the relation. We will now discuss these
steps in detail.

4.2.1. Canonicalization

Redirect Resolution. Our infobox heuristics
deliver facts that have Wikipedia entities (i.e.
Wikipedia links) as arguments. These links, how-
ever, need not be the correct Wikipedia page iden-
tifiers. For example, a reference to the city of Saint

Petersburg may be given as the link St. Peters-
burg. If one clicks on that link, Wikipedia’s redirect
system will seamlessly forward to the correct page
Saint Petersburg, but for our ontology, these incor-
rect links have to be resolved. So, for each argu-
ment of each candidate fact, our algorithm checks
whether the argument is an incorrect Wikipedia
identifier and replaces it by the correct, redirected,
Wikipedia identifier.

Removal of Duplicate Facts. Sometimes, two
heuristics deliver the same fact. In this case, our
canonicalization eliminates one of them. Further-
more, if one fact is more precise than another, then
only the more precise fact is kept. For example, if
the category heuristic has determined a birth date
of 1935 and the infobox heuristic has determined
1935-01-08, then only the fact with 1935-01-08 is
kept.

4.2.2. Type Checking

Reductive Type Checking. A candidate fact
may contain an entity for which the heuristics could
not determine its class. Since we cannot validate
such a fact, our algorithm discards these facts. The
same applies to Wikipedia entities that have been
proposed for an article, but that do not have a page
yet. For the remaining facts, our algorithm knows
the class(es) and all super classes for each entity. If
it encounters a fact where the first argument is not
in the domain of the relation, this fact is eliminated
(similarly for the second argument and the range).
This type constraint also applies to literals, but the
extraction heuristics already make sure that literals
have the correct data type.

Inductive Type Checking. Type constraints
cannot only be used to eliminate facts, but also to
generate facts. If, for example, some entity has a
birth date, then one could infer that the entity is a
person — rather than eliminating the fact due to lack
of type information. We call this process inductive
type checking, as opposed to reductive type check-
ing. We have made the experience that for person
entities, inductive type checking works very well. So
whenever a fact contains an unknown entity and the
range or domain of the relation predicts that the
entity should be a person, the algorithm keeps the
fact and makes the entity an instance of the class
person. Reductive type checking is not applied in
these cases. We use a regular expression check to
make sure that the entity name follows the basic
pattern of given name and family name.

14

4.3. Storage

Descriptions. Due to its generality, the YAGO
ontology can store meta-relations uniformly to-
gether with usual relations. For example, we store
for each individual the URL of the corresponding
Wikipedia page with the DESCRIBES relation. This
will allow future applications to provide the user
with detailed information on the entities. We intro-
duce the DESCRIBES relation between the individual
and its URL for this purpose.

Witnesses. When a new fact was extracted from
a particular Web page, we call this page the wit-
ness for the fact. We introduce the FOUNDIN rela-
tion, which holds between a fact and the URL of the
witness page. We use the USING relation to identify
the technique by which a fact was extracted and the
DURING relation to give the time of the extraction.
The information about witnesses will enable appli-
cations to use, e.g., only facts extracted by a certain
technique, facts extracted from a certain source or
facts of a certain date.

File Format. The YAGO model itself is indepen-
dent of a particular data storage format. To produce
minimal overhead, we decided to use simple text files
as an internal format. We maintain a folder for each
relation and each folder contains files that list the
entity pairs. With each fact, we store the estimated
accuracy as a value between 0 and 1 (as given by
our evaluation, see Section 5). We provide conver-
sion programs to convert the ontology to different
output formats. First, YAGO is available as a sim-
ple XML version of the text files. We also provide an
RDFS version of YAGO, as explained in Section 2.7.
Furthermore, YAGO can be converted to a database
table. The table has the simple schema

FACTS(factld,argl, relation, arg2, accuracy)

We provide software to load YAGO into an Oracle,
Postgres, or MySQL database.

4.4. Query Engine

We implemented a simple query engine along the
lines of [32] on top of the database version of YAGO.
It can solve queries of the form described in Sec-
tion 2.8. The engine first normalizes the shorthand
notations to the standard notation, so that each
line of the query consists of a fact identifier, a first
argument, a relation and a second argument. Since
entities can have several names in YAGO, we have
to deal with ambiguity. Our query engine makes

sure that each word in the query is considered in all
of its possible meanings. For this purpose, we re-
place each non-literal, non-variable argument in the
query by a fresh variable and add a MEANS fact for
it. We call this process word resolution. Consider, for
example, the query ”Who was born after Elvis?”:

?i1l: Elvis BORNONDATE 7e
?7i2: 7x BORNONDATE 7y
?7i3: 7y AFTER 7e
This query becomes
?i0: 7Elvis” MEANS ?7Elvis
?il: 7Elvis BORNONDATE 7e
?7i2: 7x BORNONDATE 7y
?i3: 7y AFTER 7e

An answer to this query shall bind the variables of
the original, non-normalized query (assume them
to be 7e, ?x and 7y) and the variables introduced
by the word resolution (i.e. in our case 7Elvis). We
first discard lines with filter relations. In our exam-
ple, the last line is discarded. Then, one single SQL
query is fired. It contains one SELECT argument
for each variable that we want to bind and one join
for each line of the query. In the example, the SQL
query is

SELECT f0.arg2, fl.arg2, f2.argl, f2.arg?2
FROM facts £0, facts f1, facts f2

WHERE £0.argl=""Elvis"’

AND fO.relation=’means’

AND f1.argl=f0.arg2

AND f1.relation=’bornOnDate’

AND f2.relation=’bornOnDate’

This query delivers values for the variables ?Elvis,
7e, 7x and 7y. Then, the query engine evaluates the
AFTER relation on the pair ?y/7e. If the relation
holds, the binding of the variables is returned as a
result.

In the deductive closure, an individual is an in-
stance of all super-classes of its class. Since many
queries ask for the class an individual belongs
to, we pre-computed the deductive closure of the
type/subclass0f-axiom, so that each individual is
connected by a type fact to all of its super-classes.
This implementation leaves much room for improve-
ment, especially concerning efficiency. For example,
it takes several seconds to return 10 answers to the
query "Who was born after Elvis?”. Queries with
more joins can take even longer. In this article, we

15

use the engine only to showcase the contents of
YAGO.

5. Evaluation
5.1. Precision

We were interested in the precision of YAGO. To
evaluate the precision of an ontology, its facts have
to be compared to some ground truth. Since there
is no computer-processable ground truth of suitable
extent, we had to rely on manual evaluation. We
presented randomly selected facts of the ontology
to human judges and asked them to assess whether
the facts were correct. For each fact, judges could
click ”correct”, "incorrect” or ”don’t know”. Since
common sense often does not suffice to judge the
correctness of YAGO facts, we also presented them
a snippet of the corresponding Wikipedia page.
Thus, our evaluation compared YAGO against the
ground truth of Wikipedia (i.e., it does not deal with
the problem of Wikipedia containing some small
fraction of false information). Of course, it would
be pointless to evaluate the portion of YAGO that
stems from WordNet, because we can assume hu-
man accuracy here. Likewise, it would be pointless
to evaluate the non-heuristic relations in YAGO,
such as DESCRIBES or FOUNDIN. This is why we
evaluated only those facts that stem from a heuris-
tic. 13 judges participated in the evaluation and
evaluated a total number of 5200 facts. We report
the precision of the most precise and least precise
heuristics groups in Table 2. To be sure that our
findings are significant, we computed the Wilson
interval[9] for & = 5%. A confidence interval of 0%
means that the facts produced by the heuristic have
been evaluated exhaustively.

The evaluation shows very good results. 74
heuristics have a precision of over 95%. Especially
the crucial link between WordNet and Wikipedia,
WordNetLinker, turned out to be very accurate.
Also, the use of conceptual categories (Conceptu-
alCategory) and infobox types (InfoboxType) to
establish the TYPE relation proved very fruitful.
establishedInYear is a category heuristic, the other
heuristics shown in the table are infobox heuristics.
Our algorithms cannot always achieve a precision
of 100%. One reason for this is purely statistical:
even if all of our assessed sample facts are correct
(as they were indeed for many heuristics), the cen-
ter of the Wilson interval will be lower than 100%
to account for the uncertainty that is inherent in

a confidence estimation. Some fraction of the as-
sessed facts was extracted incorrectly. For example,
the inductive type checking mistook a racing horse
for a person, because it had a birth date. The
WordNetLinker made the Los Angeles Angels of
Anaheim managers a subclass of angel.

Table 2: Precision of YAGQO'’s heuristics

Heuristic #Eval| Precision
1|hasExpenses 46 100.0 % £ 0.0 %
2/hasInflation 25 100.0 % + 0.0 %
3lhasLaborForce 43 197.67441% £+ 0.0 %
4|during 232 197.48950% + 1.838 %
5|ConceptualCategory| 59 [96.94342% =+ 3.056 %
6|participatedIn 59 196.94342% + 3.056 %
7|plays 59 96.94342% + 3.056 %
8lestablishedInYear 57 196.84294% + 3.157 %
9|createdOn 57 196.84294% + 3.157 %

10|originatesFrom 57 96.84294% + 3.157 %
72|WordNetLinker 56 (95.11911% =+ 4.564 %
74|InfoboxType 76 |95.08927% + 4.186 %
75/hasSuccessor 53 94.86150% + 4.804 %
88|hasGDPPPP 75 191.22189% + 5.897 %
89/hasGini 62 91.00750% =+ 6.455 %
90|discovered 84 190.98286% + 5.702 %

Another source of error are inconsistencies of the
underlying sources. For example, for the relation
BORNONDATE, most false facts stem from erroneous
Wikipedia categories (e.g. some person born in 1802
is in the Wikipedia category 1805 births). For facts
with literals (such as HASHEIGHT), many errors stem
from a non-standard format of the numbers (giving,
e.g., one movie actor the height of 1.6km, just be-
cause the infobox says 1,632m instead of 1.632m).
Occasionally, the data in Wikipedia was updated
between the time of our extraction and the time of
the evaluation. This explains many errors in HAS-
GDPPPP and HASGINI. In addition, the evaluation
of an ontology is sometimes a philosophical issue,
because even simple relations suffer from vagueness.
For example, is Lake Victoria LOCATEDIN Tanza-
nia, if Tanzania borders the lake? Is an economist
who works in France a French Economist, even if he
was born in Ireland? These cases of disputability are
inherent even to human-made ontologies. Thus, we
can be extremely satisfied with our results. Further

16

note that these values measure just the potentially
weakest point of YAGO, as all other facts were de-
rived non-heuristically.

It is difficult to compare YAGO to other informa-
tion extraction approaches, because the approaches
usually differ in the choice of relations and in the
choice of the sources. Furthermore, precision can
usually be varied at the cost of recall. Approaches
that use pattern matching (e.g. the Espresso System
[41] or LEILA [49]) typically achieve precision rates
of 50% to 92%, depending on the extracted relation.
State-of-the-art taxonomy induction as described in
[46] achieves a precision of 84%. KnowItAll [25] and
KnowItNow [11] are reported to have precision rates
of 85% and 80%, respectively. TextRunner [4] is able
to extract a large amount of facts (11.3 million) out
of which only an estimated 69% (7.8 million) are
well-formed. Of these well-formed facts, the authors
estimate that 82% are correct. Wu et al. [55] aim
at filling in missing values in Wikipedia infoboxes
and achieve a remarkable precision of 73% to 97%.
Ponzetto et al. [43] exploit the Wikipedia category
network to construct a taxonomy and achieve a pre-
cision of around 87%. Banko et al. [5] use differ-
ent domain search strategies for fact extraction and
show a precision of around 80%.

5.2. Size

Table 3 shows the number of entities in YAGO.
Half of YAGO’s individuals are people and loca-
tions. Other prominent groups are institutions and
movies. The overall number of entities is 1.7 million.

Table 3: Number of entities in YAGO

Relations 92
Classes 224,391
Individuals (without words and literals)|1,531,588
People 546,308
Locations 230,988
Institutions/companies 57,893
Movies 33,234

Table 4 shows the number of facts for the most
frequent relations in YAGO. The overall number of
ontological facts is 15 million. This number does not
yet include the respective witness facts (FOUNDIN,
DURING and USING) and the trivial facts (INUNIT,
HASVALUE and DESCRIBES). YAGO profits most
from the infoboxes about movies, persons, and
geopolitical entities.

Table 4: Largest relations in YAGO

Table 6: Simple queries on YAGO

Relation # Facts|Relation # Facts Query Result
hasUTCOffset 12724|hasWonPrize 13645 |[Who was Einstein’s doctoral advisor? |?x=Alfred Kleiner
livesIn 15185|writtenInYear 16441 Einstein HASDOCTORALADVISOR 7x

originatesFrom 16876|directed 18633| [Who is named after a place in Africa?|?who=Gabriel Sudan
hasPredecessor 19154|actedIn 22249| |?place locatedin Africa and 22 more
hasDuration 23652|bornlnLocation 24400 ?7name means ?place

hasImdb 24659/hasArea 26781 7name familynameof ?who

hasProductionLanguage 27840|produced 30519

hasPopulation 30731/isOfGenre 33898 Table 7 shows three advanced queries. The first
hasSuccessor 46658|establishedOnDate| 69529| query uses a virtual relation (>) to ask for countries
hasWebsite 79779|created 83627| having a higher Human Development Index (HDI)
locatedIn 125738|diedOnDate 168037| than Canada. YAGO knows 5. The other queries
subClassOf 211979|bornOnDate 350613 Show how reified facts work.

givenNameOf 464816|familyNameOf 466969

inLanguage 2389627isCalled 2984362 Table 7: Advanced queries on YAGO

type 3957223 |means 4014819 Which countries have a ?other=Sweden

It is not easy to compare the size of YAGO to other
ontologies, because the ontologies usually differ in
their structure, their types of axioms, their relations,
their domain, and their quality. For informational
purposes, we list the current number of entities and
facts for some of the most important other domain-
independent ontologies in Table 5, as given on the re-
spective Web sites. DBpedia is huge, but it includes
YAGO.

Table 5: Size of other ontologies

Ontology # Entities| # Facts
SUMO [39] 20,000 60,000
Ponzetto et al. [43] n/a 110,000
WordNet [26] 117,659 821,492
Cyc [36] 300,000 3,000,000
TextRunner [4] n/al 7,800,000
YAGO 1,700,000| 15,000,000
DBpedia [2] 1,950,000{103,000,000

6. Applications
6.1. Querying

As described in Section 4.4, we have implemented
a query engine for accessing the content of YAGO.
Table 6 shows two simple queries on the ontology.
The second query makes use of the distinction be-
tween words and other individuals in YAGO.

17

higher HDI than Canada? and 4 others
Canada HASHDI ?HDIcanada
7other HASHDI ?HDIother

?HDIother > 7HDIcanada

Angela Merkel ISA chancellor

SINCE ?when

When did Angela Merkel become chancellor?|?when=2005-11-22

How is Germany called in Italian?

Germany ISCALLED 7how

INLANGUAGE Italian

7how="Germania”

It is tempting to assume some kind of “complete-
ness” of YAGO and to ask, e.g. how to say a particu-
lar word in Italian, who governed a particular coun-
try at a particular point of time or who was a par-
ticular person’s doctoral advisor. It should not be
forgotten, however, that YAGO cannot know more
than what is available in the infoboxes and cate-
gories of Wikipedia. YAGO’s knowledge is huge, but
it cannot be complete.

6.2. Scientific Applications

Notwithstanding its young age, YAGO has al-
ready found several applications in different areas of
research.

Semantic Search. YAGO is the basis for the
semantic search engines NAGA [32] and ESTER
[6]. NAGA utilizes YAGO as a knowledge base for
graph-based information retrieval. It allows query-
ing YAGO in a SPARQL-like fashion and ranks the

answers according to their ”prominence”. Its rank-

ing mechanism uses YAGQO’s data model to formal-
ize notions like the compactness, informativeness
and confidence of answer graphs. ESTER combines
full text search and ontological search by weaving
the YAGO ontology into a text corpus. This allows
ESTER to deliver hybrid answers that incorporate
both data from the text and from the ontology.

Entity Organization. Stoyanovich et al.[48]
build an enriched Web graph, which contains Web
pages and the entities mentioned in them. Based
on this graph, the authors propose authority-based
ranking techniques that combine Web page author-
ities and entity authorities into a mutual reinforce-
ment process. The ontological basis for the enriched
graph structure is YAGO.

Demartini [20] aims at finding per-topic experts
among the Wikipedia authors. YAGO’s semantics
is exploited to refine and disambiguate Wikipedia
topics in the expert finding process.

Information Extraction. The idea of YAGO’s
category heuristics has been applied by Ponzetto
et al. [43] to extract ontological knowledge from
Wikipedia’s category system. Qi et al. [56] build on
YAGO to extract temporal facts from Web docu-
ments.

6.3. Ontology Construction

YAGO is used in numerous major ontology
projects (Figure 3). Freebase® is a community ef-
fort to gather ontological data. YAGO is currently
being merged into Freebase and will thus contribute
to bootstrapping the project. UMBEL? is a very
young project, which aims to provide a structure
of subject concepts. YAGO will contribute the in-
dividuals to this structure. The Suggested Upper
Model Ontology SUMO [39] is a highly axiomatized
manually assembled ontology. SUMO and YAGO
have been merged [19], thus combining the rich ax-
ioms of SUMO with the large number of individuals
from YAGO. The Linking Open Data Project [8]
aims to interconnect existing ontologies as Web ser-
vices. YAGO is already available as a Web service
(courtesy of Zitgist LLC. %) and thus an integral
part of the project. Cyc [36] is a commercial effort
to create a huge semantic knowledge base. We are
co-operating with the Cyc team in order to inte-
grate data from YAGO into Cyc. DBpedia [2] is a
project that aims to extract ontological data from

8 http://freebase.com
9 http://www.umbel.org
Ohttp://wuw.zitgist.com

18

Wikipedia. YAGO is used in DBpedia as a tax-
onomic backbone. It links the individuals to the
WordNet hierarchy of concepts in DBpedia.

Figure 3: YAGO and Other Ontologies

7. Conclusion
7.1. Summary

We presented our ontology YAGO and the
methodology for constructing it automatically. We
explained the logical model behind YAGO and
showed how it extends the data model of RDFS to
represent n-ary relations. We proved that, despite
the expressiveness of the model, its consistency is
still decidable. Furthermore, we could show that
the model allows computing a unique smallest base
for any given YAGO ontology.

We showed how the category system and the in-
foboxes of Wikipedia can be exploited for knowledge
extraction. We explained how Wikipedia and Word-
Net can be linked and how we can enforce high pre-
cision through type checks.

Our evaluation showed not only that YAGO is
one of the largest knowledge bases available today,
but also that it has an unprecedented quality in
the league of automatically generated ontologies. A
number of major ontology projects already make use
of YAGO.

7.2. Discussion

Although the knowledge extraction itself runs in
a fully automated way, a one-time manual effort was
necessary to bootstrap the extraction. We identi-
fied and defined attributes and relations for the in-

foboxes, and we established the patterns for the cat-
egory heuristics. Furthermore, we manually identi-
fied some exceptions for the heuristic that connects
Wikipedia and WordNet. Given the huge amount of
knowledge that we could extract in return and given
the high precision of the data that we could achieve,
we believe that the manual effort was justified.

So far, YAGOQO’s extraction mechanisms are tai-
lored to Wikipedia and WordNet. However, our work
has created a rich framework of methods that can
be applied to other sources as well. Many sources,
such as the catalogue of Amazon.com or the In-
ternet Movie Database, use category systems and
structures that are similar to infoboxes. Further-
more, techniques such as inductive and reductive
type checking can be applied in other scenarios, too.
Finally, YAGO itself can be useful for other infor-
mation extraction projects, e.g., to check the plau-
sibility of the extracted facts.

7.3. Outlook

YAGO opens up new opportunities and chal-
lenges. On the theoretical side, we plan to investi-
gate how the YAGO model and OWL 1.1 can be
reconciled, once OWL 1.1 has been fully developed.
Furthermore, the efficiency of the query engine de-
serves attention. On the practical side, we plan to
enrich YAGO by further facts from other sources.
We also plan to look at ways to automatically grow
and maintain the ontology. We hope that the knowl-
edge that YAGO already provides will facilitate
further extension. This could result in a positive
feedback loop, in which the addition of knowledge
helps the extraction of new knowledge.

YAGO can be freely downloaded from our Web
site http://www.mpii.de/yago. We hope that the
availability of a huge, clean, and high quality on-
tology can give new impulses to the Semantic Web
vision.

Appendix A. Proof of Theorem 1

Let F be a (finite) set of fact triples, as defined in
Chapter 2.4. Let — be the rewrite system defined
there (see [3] for a reference on term rewriting). All
rules of the rewrite system are of the form F —
FU{f}, where F C F and f € F.Hence — is mono-
tone. Furthermore, F is finite. Hence — is finitely
terminating. It is easy to see that if F' — F U {f1}
and F' — FU{f>} for some F C F and f1, fo € F,
then

F— FU{fi} = FU{fi, fa}
F— FU{fa} = FU{fi, fo}

Hence — is locally confluent. Since — is finitely
terminating, — is globally confluent and convergent.
Thus, given any set of facts F' C F, the largest set
Dp with F' —* Dp is unique and finite.

Appendix B. Proof of Theorem 2

A canonical base of a YAGO ontology y is any
base b of y, such that there exists no other base b’ of
y with [o/] < |b]. This section will prove that, for a
consistent YAGO ontology, there exists exactly one
such base. In the following, — denotes the rewrite
system and F denotes the set of facts defined in
Chapter 2.4.

LEMMA 1: [No circular rules]
Let y be a consistent YAGO ontology, and
{f1, .-, fu} aset of facts. Then there are no sets

of facts F1, ..., F,, such that that Fy,...,F, C
D(y) and

P — f1 with fg c

Fg — fg with f3 S Fg

Proof: By analyzing all possible pairs of rule
schemes (1)...(5), one finds that the above rules
must fall into one of the following categories:

— All rules are instances of (5). In this case,
(¢,sUBCLASSOF, ¢) € D(y) for some common
entity ¢ and hence y cannot be consistent.

— All rules are instances of (1). In this case,
(¢, SUBRELATIONOF, ¢) € D(y) for some common
entity ¢ and hence y cannot be consistent.

— Allrules are instances of (2). In this case, (¢, r,c) €
D(y) for some common entity ¢ and relation r
and (r,TYPE,atr)€ D(y) and hence y cannot be
consistent.

— n = 2, one rule is an instance of (1), and the
other an instance of (2). In this case, (c,r,c) €
D(y) for some common entity ¢ and relation r
and (r,TYPE,atr)e D(y) and hence y cannot be
consistent.

LEMMA 2: [No derivable facts in canonical base)
Let y be a consistent YAGO ontology and b
a canonical base of y and let B = range(b).
Let f € D(y) be a fact such that D(y)\{f} —
D(y). Then f ¢ B.

Proof: Since b is a base, there is a sequence of sets

of facts By, ..., B,, such that

B=By— By —Bys—...— B,_1 — B, =D(y)

This sequence is a sequence of rule applications,
where each rule has the form S — s, where S C F
and s € F. We call S the premise of the rule and
s its conclusion. We say that a fact ¢ contributes to
a set of facts T" in the sequence By, ...B,, if there is
a sequence of rule applications ry, ...ry,, so that ¢ is
in the premise of r1, the conclusion of r; is in the
premise of 75 etc. and the conclusion of 7, is in 7.
Now assume f € B. Since D(y)\{f} — D(y),
there must be a rule G — f with G C D(y)\{f}.
Let ¢ € [0,n] be the smallest index such that B; 2
G. f cannot contribute to G, because then there
would exist circular rules in the sense of the preced-
ing lemma. Hence f does not contribute to G. Then
B\{f} is also a base, because the above rule appli-
cations can be re-ordered so that f is derived from
B;. Hence b cannot be a canonical base.
Now we are ready to prove Theorem 2:

THEOREM 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO on-

tology is unique.

Proof: Let b be a canonical base of a consistent
YAGO ontology y. Let B = range(b). We define the
set

C:= D) \{f [D\{f} = D(y)}

Intuitively speaking, C' contains only those facts
that cannot be derived from other facts in D(y). By
the previous lemma, B C C. Assume B C C, i.e.
there exists a fact f € C, f ¢ B. Since C C D(y),
f € D(y). Since b is a base, there exists arule S — f
for some S C D(y). Hence f ¢ C, which is a con-
tradiction. Hence B = C and every canonical base
equals b.

This theorem entails that the canonical base of a
YAGO ontology can be computed by removing all
facts that can be derived from other facts in the set
of derivable facts.

References

[1] E. Agichtein and L. Gravano.
relations from large plain-text collections.
2000.

[2] Séren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
Dbpedia: A nucleus for a web of open data. In ISWC,
volume 4825 of LNCS, pages 722-735. Springer, 2007.

Snowball: extracting
In ICDL,

20

[3] Franz Baader and Tobias Nipkow. Term rewriting and
all that. Cambridge University Press, New York, NY,
USA, 1998.

[4] Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. Open
information extraction from the web. In IJCAI, pages
2670-2676, 2007.

[5] Michele Banko and Oren Etzioni. Strategies for lifelong
knowledge extraction from the web. In K-CAP ’07:
Proceedings of the 4th international conference on
Knowledge capture, pages 95—102, New York, NY, USA,
2007. ACM.

[6] Holger Bast, Alexandru Chitea, Fabian M. Suchanek,
and Ingmar Weber. Ester: efficient search on text,
entities, and relations. In SIGIR, pages 671-678, 2007.

[7] Paul V. Biron and Ashok Malhotra. Xml schema part
2: Datatypes second edition. http://www.w3.org/TR/
xmlschema-2/#built-in-datatypes.

[8] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data:
Principles and State of the Art. In WWW, 2008.

[9] Lawrence D. Brown, T. Tony Cai, and Anirban

DasGupta. Interval estimation for a binomial

proportion. Statistical Science, 16(2):101-133, 2001.

Razvan C. Bunescu and Marius

Pasca. Using encyclopedic knowledge for named entity

disambiguation. In FACL, 2006.

[11] Michael J. Cafarella, Doug Downey, Stephen Soderland,
and Oren Etzioni. KnowItNow: Fast, scalable
information extraction from the web. In EMNLP, 2005.

[12] Michael J. Cafarella, Christopher Re, Dan Suciu, and
Oren Etzioni. Structured querying of web text data: A
technical challenge. In CIDR, pages 225-234, 2007.

[13] Soumen Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. In WWW, pages 571-580, 2007.

[14] N. Chatterjee, S. Goyal, and A. Naithani. Resolving
pattern ambiguity for english to hindi machine
translation using WordNet. In Workshop on Modern
Approaches in Translation Technologies, 2005.

[15] Surajit Chaudhuri, Venkatesh Ganti, and Rajeev
Motwani. Robust identification of fuzzy duplicates. In
ICDE, 2005.

[16] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang.
Entityrank: Searching entities directly and holistically.
In VLDB, pages 387-398, 2007.

[17] William W. Cohen and Sunita Sarawagi. Exploiting
dictionaries in named entity extraction: combining
semi-markov extraction processes and data integration
methods. In KDD, 2004.

[18] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools and
applications. In ACL, 2002.

[19] Gerard de Melo, Fabian M. Suchanek, and Adam Pease.
Integrating YAGO into the Suggested Upper Merged
Ontology. submitted to FOIS 2008.

[20] Gianluca Demartini. Finding experts using wikipedia.
In Anna V. Zhdanova, Lyndon J B Nixon, Malgorzata
Mochol, and John Breslin, editors, Proceedings of
the Workshop on Finding Experts on the Web with
Semantics (FEWS2007) at ISWC/ASWC2007, Busan,
South Korea, November 2007.

[21] Pedro DeRose, Warren Shen, Fei Chen 0002, AnHai
Doan, and Raghu Ramakrishnan. Building structured

(10]

web community portals: A top-down, compositional, and
incremental approach. In VLDB, pages 399-410, 2007.

[22] Jorg Diederich and Wolf-Tilo
Balke. The semantic growbag algorithm: Automatically
deriving categorization systems. In ECDL, pages 1-13,
2007.

[23] Nick Koudas (Editor). Special issue on data
management issues in social sciences. IEEE Data Eng.
Bull., 30(2), 2007.

[24] Oren Etzioni, Michele Banko, and Michael J. Cafarella.
Machine reading. In AAAI 2006.

[25] Oren Etzioni, Michael J. Cafarella, Doug Downey,
Stanley Kok, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S. Weld, and Alexander Yates. Web-
scale information extraction in KnowlItAll. In WWW,
2004.

[26] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[27] J. Graupmann, R. Schenkel, and G. Weikum. The
spheresearch engine for unified ranked retrieval of
heterogeneous XML and web documents. In VLDB,
2005.

[28] Tan Horrocks, Oliver Kutz, and Ulrike Sattler. The even
more irresistible SROIQ. In KR, 2006.

[29] W. Hunt, L.V. Lita, and E. Nyberg. Gazetteers,
wordnet, encyclopedias, and the web: Analyzing
question answering resources. Technical Report CMU-
LTI-04-188, Language Technologies Institute, Carnegie
Mellon, 2004.

[30] Georgiana Ifrim and Gerhard Weikum. Transductive
learning for text classification using explicit knowledge
models. In PKDD, 2006.

[31] Robert Jaschke, Leandro Balby Marinho, Andreas
Hotho, Lars Schmidt-Thieme, and Gerd Stumme. Tag
recommendations in folksonomies. In PKDD, pages 506—
514, 2007.

[32] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim,
Maya Ramanath, and Gerhard Weikum. NAGA:
Searching and Ranking Knowledge. In ICDE. IEEE,
2008.

[33] Daniel Kinzler.
Wikimania, 2005.

[34] Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng.
An effective approach to document retrieval via utilizing
wordnet and recognizing phrases. In SIGIR, 2004.

[35] Gang Luo, Chungiang Tang, and Ying li Tian.
Answering relationship queries on the web. In WWW,
pages 561-570, 2007.

[36] Cynthia Matuszek, J. Cabral, M. Witbrock, and
J. DeOliveira. An introduction to the syntax and content
of Cyc. In AAAI Spring Symposium, 2006.

[37] David Milne, Ian H. Witten, and David Nichols. A
knowledge-based search engine powered by wikipedia.
In ACM Conference on Information and Knowledge
Management (CIKM), 2007.

[38] Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong Wen,
and Wei-Ying Ma. Web object retrieval. In WWW,
pages 81-90, 2007.

[39] Ian Niles and Adam Pease. Towards a standard upper
ontology. In FOIS, 2001.

[40] Natalya Fridman Noy, AnHai Doan, and Alon Y. Halevy.
Semantic integration. AI Magazine, 26(1):7-10, 2005.

Wikisense - mining the wiki. In

21

[41] Patrick Pantel and Marco Pennacchiotti. Espresso:
Leveraging generic patterns for automatically harvesting
semantic relations. In ACL, 2006.

[42] Peter F. Patel-Schneider and Ian Horrocks. Owl 1.1 web
ontology language. http://www.w3.org/Submission/
owlll-overview/.

[43] Simone Paolo Ponzetto and Michael Strube. Deriving a
large-scale taxonomy from wikipedia. In AAAI, pages
1440-1445, 2007.

[44] Maria Ruiz-Casado, Enrique Alfonseca, and Pablo
Castells. Automatic extraction of semantic relationships
for WordNet by means of pattern learning from
Wikipedia. In NLDB, pages 67-79, 2006.

[45] S. Russell and P. Norvig. Artificial Intelligence: a
Modern Approach. Prentice Hall, 2002.

[46] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

Semantic taxonomy induction from heterogenous

evidence. In ACL, 2006.

Steffen Staab and Rudi Studer, editors. Handbook on

Ontologies. International Handbooks on Information

Systems. Springer, 2004.

Julia Stoyanovich, Srikanta Bedathur, Klaus Berberich,

and Gerhard Weikum. Entityauthority: Semantically

enriched graph-based authority propagation. In

Proceedings of 10th International Workshop on Web and

Databases (WebDB 2007), page n/a, Beijing, China,

2007. n/a.

Fabian M. Suchanek, Georgiana Ifrim, and Gerhard

Weikum. Combining linguistic and statistical analysis

to extract relations from web documents. In KDD, 2006.

Fabian M. Suchanek, Georgiana Ifrim, and Gerhard

Weikum. LEILA: Learning to Extract Information

by Linguistic Analysis. In Workshop on Ontology

Population at ACL/COLING, 2006.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard

Weikum. Yago: A Core of Semantic Knowledge. In

WWW, New York, NY, USA, 2007. ACM Press.

[62] Martin Theobald, Ralf Schenkel, and Gerhard Weikum.
TopX and XXL at INEX 2005. In INEX, 2005.

[53] Max Volkel, Markus Krotzsch, Denny Vrandecic, Heiko
Haller, and Rudi Studer. Semantic wikipedia. In WWW,
2006.

[54] Nicolas Weber and Paul Buitelaar. Web-based ontology
learning with isolde. In Proc. of ISWC2006 Workshop
on Web Content Mining with Human Language
Technologies, 2006.

[55] Fei Wu and Daniel S. Weld. Autonomously semantifying
wikipedia. In CIKM, 2007.

[56] Qi Zhang, Fabian M. Suchanek, and Gerhard Weikum
Lihua Yue. Tob: Timely ontologies for business relations.
In WebDB Workshop. ACM, 2008.

[47]

(48]

(49]

[50]

[51]

