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ABSTRACT
The World Wide Web provides a nearly endless source of
knowledge, which is mostly given in natural language. A
first step towards exploiting this data automatically could
be to extract pairs of a given semantic relation from text
documents – for example all pairs of a person and her birth-
date. One strategy for this task is to find text patterns that
express the semantic relation, to generalize these patterns,
and to apply them to a corpus to find new pairs. In this pa-
per, we show that this approach profits significantly when
deep linguistic structures are used instead of surface text
patterns. We demonstrate how linguistic structures can be
represented for machine learning, and we provide a theoreti-
cal analysis of the pattern matching approach. We show the
practical relevance of our approach by extensive experiments
with our prototype system Leila.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing - text analysis; I.2.6 [Artificial Intelligence]: Learning
- knowledge acquisition

General Terms
Algorithms, Design, Experimentation, Theory

1. INTRODUCTION

1.1 Motivation
Many data mining tasks such as classification, ranking,

recommendation, or data cleaning could be boosted by ex-
plicit formalized world knowledge. Unfortunately, the man-
ual construction and maintenance of such knowledge bases is
a limiting factor in our modern world of “exploding informa-
tion”. Hence it seems tempting to exploit the World Wide
Web and other poorly structured information sources for
automatically acquiring ontological knowledge. In this con-
text, a first step could be to extract instances of a given tar-
get relation from a given Web page corpus. For example, one
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might be interested in extracting all pairs of a person and
her birth date (the birthdate-relation), all pairs of a com-
pany and the city of its headquarters (the headquarters-
relation) or all pairs of an entity and the class it belongs to
(the instanceOf-relation).

The most promising techniques to extract information
from unstructured text seem to be natural language pro-
cessing (NLP) techniques. Most approaches, however, have
limited the NLP part to part-of-speech tagging. This paper
demonstrates that information extraction can profit signifi-
cantly from deep natural language processing. It shows how
deep syntactic structures can be represented suitably and it
provides a statistical analysis of the pattern matching ap-
proach.

1.2 Related Work
There are numerous Information Extraction (IE) ap-

proaches. Some focus on unary relations (e.g. on extracting
all cities from a given text [13, 7]). In this paper we pur-
sue the more general binary relations. Some systems are
designed to discover new binary relations [21]. However, in
our setting, the target relation is given. Some systems are
restricted to learning the instanceOf-relation [11, 4]. By
contrast, we are interested in extracting arbitrary relations
(including instanceOf). Whereas there are systems that re-
quire human input for the IE process [24], our work aims at
a completely automated system. There exist systems that
can extract information efficiently from formatted data [15,
14]. However, since a large part of the Web consists of nat-
ural language text, we consider in this paper only systems
that accept unstructured corpora. As initial input, some
systems require a hand-tagged corpus [17, 31], manually as-
sembled text patterns [34] or hand-chosen templates [32].
Since manually tagged input amounts to huge human ef-
fort, we consider here only systems that do not have this
constraint. Some systems do not work on a closed corpus,
but make use of the full Web for the IE process [12, 9]. De-
spite the more powerful setting, these systems use extraction
techniques similar to the other approaches. In order to study
these extraction techniques in a controlled environment, we
restrict ourselves to corpus-based systems for this paper.

One school of extraction techniques concentrates on de-
tecting the boundaries of interesting entities in the text [7,
13, 35]. This usually goes along with the restriction to unary
target relations. Other approaches make use of the con-
text in which an entity appears [10, 5]. This school is re-
stricted to the instanceOf-relation. The only group that
can learn arbitrary binary relations is the group of pattern
matching systems. The huge majority of them [12, 1, 23,
3, 28, 33] uses only a shallow linguistic analysis of the cor-



pus. Consequently, most of them are extremely volatile to
small variations in the patterns (see the conclusion of [23] for
an example). Furthermore, these approaches cannot benefit
from advanced linguistic techniques such as anaphora reso-
lution. The few approaches that do use deep NLP [6, 27]
consider only the shortest path in the dependency graph as
a feature. Thus, these systems cannot deal with the dif-
ference between ”A dog is a mammal” (which expresses the
subConcept-relation) and ”This dog is a nag” (which does
not). None of the pattern matching approaches provides an
analysis of the influence of false positive patterns.

1.3 Link Grammars
There exist different approaches for parsing natural lan-

guage sentences. They range from simple part-of-speech
tagging to context-free grammars and more advanced tech-
niques such as Lexical Functional Grammars, Head-Driven
Phrase Structure Grammars or stochastic approaches. For
our implementation, we chose the Link Grammar Parser
[26]. It is based on a context-free grammar and hence it
is simpler to handle than the advanced parsing techniques.
At the same time, it provides a much deeper semantic struc-
ture than the standard context-free parsers. Figure 1 shows
a linguistic structure produced by the Link Parser (a link-
age). A linkage is a connected planar undirected graph, the

Chopin was.v     great  among the composers.n of   his  time.n

subj compl mod

prepObj

mod

prepObj

detdet

Figure 1: A simple linkage

nodes of which are the words of the sentence. The edges (the
links) are labeled with connectors. For example, the connec-
tor subj marks the link between the subject and the verb of
the sentence. The linkage must fulfill certain linguistic con-
straints. These are given by a link grammar, which specifies
which word may be linked by which connector to preceding
and following words. The parser also assigns part-of-speech
tags. For example, in Figure 1, the suffix ”.n” identifies
”composers” as a noun.

We say that a linkage expresses a relation r, if the under-
lying sentence implies that a pair of entities is in r. Note
that the deep grammatical analysis of the sentence would
allow us to define the meaning of the sentence in a theoret-
ically well-founded way [22]. For this paper, however, we
limit ourselves to an intuitive understanding of the notion
of meaning. The problem of the corpus containing sentences
that are not true is outside the scope of this paper.

We define a pattern as a linkage in which two words have
been replaced by placeholders. Figure 2 shows a sample
pattern with the placeholders ”X” and ”Y”. We call the

    X     was.v clearly mediocre  among the          Y

subj

compl

mod
prepObj

detmod

Figure 2: A simple pattern

(unique) shortest path from one placeholder to the other
the bridge, marked in bold in Figure 2. A pattern matches
a linkage if the bridge of the pattern appears in the linkage,
although nouns and adjectives are allowed to differ. For
example, the pattern in Figure 2 matches the linkage in
Figure 1, because the bridge of the pattern occurs in the
linkage, apart from a substitution of ”great” by ”mediocre”.

If a pattern matches a linkage, we say that the pattern pro-
duces the pair of words that the linkage contains in the posi-

tion of the placeholders. In our example, the pair ”Chopin”
/ ”composers” is produced.

2. SYSTEM MODEL

2.1 Algorithm
As a definition of the target relation, our algorithm re-

quires a function that decides into which of the following
categories a pair of words falls:

• An example for the target relation. For instance, for the
birthdate-relation, the examples can be given by a list of
persons with their birth dates.

• A counterexample. For the birthdate-relation, the
counterexamples can be deduced from the examples (e.g.
if ”Chopin” / ”1810” is an example, then ”Chopin” /
”2000” must be a counterexample).

• A candidate. For birthdate, the candidates would be
all pairs of a proper name and a date that are not an
example or a counterexample (e.g. if ”Mozart” is not in
the examples, then ”Mozart” / ”2000” is a candidate).

• None of the above.

The corpus should be a sequence of natural language sen-
tences. These sentences are parsed, producing a deep gram-
matical structure for each of them. In principle, our algo-
rithm does not depend on a specific parsing technique. For
example, the parse-trees produced by a context-free gram-
mar can serve as grammatical structures. Here, we use link-
ages. The core algorithm proceeds in three phases:

1. In the Discovery Phase, it seeks linkages in which an ex-
ample pair appears. It replaces the two words by place-
holders, thus producing a pattern. These patterns are
collected as positive patterns. Then, the algorithm runs
through the sentences again and finds all linkages that
match a positive pattern, but produce a counterexample.
The corresponding patterns are collected as negative pat-
terns1.

2. In the Training Phase, statistical learning is applied to
learn the concept of positive patterns. The result of this
process is a classifier for patterns.

3. In the Testing Phase, the algorithm considers again all
sentences in the corpus. For each linkage, it generates all
possible patterns by replacing two words by placeholders.
If the two words form a candidate and the pattern is clas-
sified as positive, the produced pair is proposed as a new
element of the target relation (an output pair).

Although usually the Discovery Phase and the Testing Phase
are run on the same corpus, it is also possible to run them
on two distinct corpora.

2.2 Robust Learning
The central task of the Discovery Phase is determining

patterns that express the target relation. Since the linguis-
tic meaning of the patterns is not apparent to the system, it
relies on the following hypothesis: Whenever an example
pair appears in a sentence, the linkage and the correspond-
ing pattern express the target relation. This hypothesis may
fail if a sentence contains an example pair merely by chance,
i.e. without expressing the target relation. In this case we
would use the pattern as a positive sample for the general-
ization process, although it is a negative one. Analogously, a
pattern that does express the target relation may occasion-
ally produce counterexamples. In this case, the pattern is
used as a negative sample in the generalization process. We

1Note that different patterns can match the same linkage.



call these patterns false samples. The problem of false sam-
ples is intrinsic for pattern matching approaches in general.
However, false samples do not question the effectiveness of
our approach.

This is because virtually any learning algorithm can deal
with a limited number of false samples. For Support Vec-
tor Machines (SVM), the effect of false samples has been
analyzed thoroughly in [8]. In general, an SVM is highly
tolerant to noise. There are also detailed theoretical stud-
ies [2] on how the proportion of false samples influences a
PAC-learner. In essence, the number of required samples
increases, but the classification is still learnable. It is also
possible to understand the concept of positive patterns as a
probabilistic concept [19]. In this setting, the pattern is not
classified as either positive or negative, but it may produce
pairs of the target relation with a certain fixed probability.
The task of the learner is to learn the function from the pat-
tern to its probability. [25] shows that probabilistic concepts
can be learned and gives bounds on the number of required
samples. The following subsection considers a particularly
simple class of learners, the k-Nearest-Neighbor-classifiers.

2.2.1 k-Nearest-Neighbor Classifiers
A k-Nearest-Neighbors (kNN) classifier requires a distance

function on patterns. We consider a simple variant of an
adaptive kNN classifier: In the Discovery Phase, a newly
discovered pattern becomes a prototype for a whole class of
new patterns. Whenever another pattern is discovered, we
check whether its distance to an existing prototype is be-
low some threshold θ. We say that the pattern falls on the
prototype2. If the new pattern does not fall on an existing
prototype, it becomes a prototype on its own. After the
Discovery Phase, we label a prototype as positive if the ma-
jority of the patterns that fell on it were positive, as negative
else.

In the Testing Phase, we find for each test pattern its
closest prototype. If there is no prototype within the dis-
tance θ, the pattern is classified as negative. If it falls on
a prototype p, the pattern is classified as positive if p has
a positive label and as negative else. We are interested in
the probability that a test pattern is classified as positive,
although the produced pair is not in the target relation.

In the Testing Phase, each possible pattern is generated
for each sentence in the corpus (this will be a number of
patterns quadratic in the number of nouns in the sentence).
We model the sequence of all these patterns as a sequence
of N random events. Each pattern produces a pair of words
with its underlying sentence. This pair can either be an ex-
ample, a counterexample or a candidate3. We model these
events by Bernoulli random variables EX, CE, CAND, cap-
tured by a multinomial distribution: EX = 1 iff the pair
is an example, CE = 1 iff the pair is a counterexample,
CAND = 1−EX −CE = 1 iff the pair is a candidate. For
each prototype p, we introduce a Bernoulli random variable
Fp, such that Fp = 1 with probability fp iff a generated
pattern falls on p. Note that this model also applies to the
Discovery Phase.

We first concentrate on the Discovery Phase. We are in-
terested in the probability that a given prototype p gets a
positive label, although it does not express the target rela-

2If θ is chosen sufficiently small, all patterns falling on p
share their essential linguistic properties. Hence we assume
that they all have the same probability of producing exam-
ples or counterexamples.
3For simplification, we assume that the 4th class of word
pairs (see section 2.1) does not appear. If it does, it will
only improve the bound given here.

tion. We define the quality of p as the relative probability
of patterns falling on p to produce examples:

qp =
P (EX|Fp)

P (EX|Fp) + P (CE|Fp)

Since p does not express the target relation, qp < 1
2
. The

allotment of p is the share of examples and counterexam-
ples produced by patterns falling on p: ap = P (EX|Fp) +
P (CE|Fp). The better the examples and counterexamples
are chosen, the more likely it is that patterns falling on p pro-
duce examples or counterexamples (instead of candidates)
and the larger ap will be. Let #EXp stand for the number
of examples and #CEp for the number of counterexamples
produced by patterns falling on p in the Discovery Phase.
We are interested in the probability of p getting a positive
label, namely P (#EXp > #CEp), given that qp < 1

2
. Using

Chernoff-Hoeffding bounds, we prove[29] that

P (#EXp > #CEp) ≤ 2e−N 1
2 (apfp)2+2e−(apfpN+2)( 1

2−qp)2 .

Now we turn to the Testing Phase. We are interested in
the probability that an incorrect output pair is produced by
a pattern falling on p. For this to happen, a test pattern
must fall on p, it must produce a candidate and p must be
wrongly labeled as positive. Combined, this yields

P (CAND ∩ Fp) · P (#EXp > #CEp)

= (1− ap) · fp · P (#EXp > #CEp)

≤ 2(1− ap) · fp · (e−N 1
2 (apfp)2 + e−(apfpN+2)( 1

2−qp)2) .

This estimation shows that a larger allotment ap (i.e. a
good choice of examples and counterexamples) decreases the
probability of wrongly classifying a candidate pair. Further-
more, the estimation mirrors the intuition that either many
patterns fall on p in the Discovery Phase (fp large) and then
p is unlikely to have a false label, or few patterns fall on p
(fp small) and then the probability of p classifying a test
pattern is small. As the number of sentences (and hence
the number of generated patterns N) increases, the bound
converges to zero.

2.3 Feature Model
This section discusses how patterns can be represented

and generalized using machine learning. The most impor-
tant component of a pattern is its bridge. In the Discov-
ery Phase, we collect the bridges of the patterns in a list.
Each bridge is given an identification number, the bridge
id. Two bridges are given the same bridge id if they dif-
fer only in their nouns or adjectives (as discussed in section
1.3). Furthermore, positive patterns are given the label +1
and negative patterns −1. The context of a word in a link-
age is the set of all its links together with their direction
in the sentence (left or right) and their target words. For
example, the context of ”composers” in Figure 1 is the set of
triples {(det, left, ”the”), (prepObj, left, ”among”), (mod,
right, ”of”)}. Each word is assigned a set of types. We
distinguish nouns, adjectives, prepositions, verbs, numbers,
dates, names, person names, company names and abbrevi-
ations. The parser already assigns the grammatical types
by its part-of-speech tagging. We assign the other types by
regular expression matching. For example, any word match-
ing ”[A-Z][a-z]+ Inc” is given the type company. To accom-
modate the role of stopwords in understanding a sentence,
we make each stopword a type of its own. We represent a
pattern by a quadruple of its bridge id, the context of the
first placeholder, the context of the second placeholder, and
its label. For example, supposing that the bridge id of the
pattern in Figure 2 is 42 and supposing that the pattern is



positive, we represent the pattern as

(42, {(subj,right,”was”)}, {(det, left, ”the”),
(prepObj, left, ”among”), (ofComp, right, ”of”)}, +1)

To show that our approach does not depend on a specific
learning algorithm, we implemented two machine learning
algorithms: The adaptive kNN classifier discussed in 2.2.1
and an SVM classifier.

2.3.1 kNN
For the adaptive kNN, we need a similarity function on

patterns. By x ∼ y we denote the auxiliary function

x ∼ y =

{
1 if x = y
0 else

Let τ(w) be the set of types of a word w. The similarity
of two words is the overlap of their type sets:

sim(w1, w2) =
|τ(w1) ∩ τ(w2)|
|τ(w1) ∪ τ(w2)|

The similarity of two contexts C1, C2 is computed by com-
paring each triple in C1 to all triples in C2, where each triple
contains a connector, a direction and a word:

sim(C1, C2) =

∑

(con1,dir1,w1)∈C1
(con2,dir2,w2)∈C2

α1(con1 ∼ con2) + α2(dir1 ∼ dir2) + α3sim(w1, w2)

|C1| · |C2|

Here, α1, α2, α3 are weighting factors that sum up to 1.
We chose α1 = 0.4, α2 = 0.2, α3 = 0.4. Two patterns have
a similarity of zero if they have different bridge ids. Else,
their similarity is the averaged similarity of the contexts of
the first and second placeholder, respectively:

sim((b1, C11, C12, l1), (b2, C21, C22, l2)) =
1
2
(b1 ∼ b2)(sim(C11, C21) + sim(C12, C22))

Let cp be the set of patterns that fell on a prototype p
during the Discovery Phase. We compute the label of p as
the sum of the labels of the patterns in cp, weighted with
their respective similarities to p:

label(p) =
∑

p′=(b,C1,C2,l) ∈ cp

l · sim(p, p′)
|cp|

To classify a pattern in the Testing Phase, we first determine
its prototype. If there is no prototype within the distance
θ, the pattern receives the label −∞. Else, we calculate its
label as the product of the similarity to the prototype and
the label of the prototype.

2.3.2 SVM
To generalize patterns by an SVM, the patterns have to be

translated to real-valued feature vectors. For this purpose,
we first group the patterns by their bridge ids. Each group
will be treated separately so that it is not necessary to store
the bridge id in the feature vector. If n is the number of
connector symbols, then a feature vector for a pattern can
be depicted as follows:

label︷︸︸︷
R

context 1︷ ︸︸ ︷
X . . . X︸ ︷︷ ︸

connector1

. . . X . . . X︸ ︷︷ ︸
connectorn

context 2︷ ︸︸ ︷
X . . . X︸ ︷︷ ︸

connector1

. . . X . . . X︸ ︷︷ ︸
connectorn

The vector consists of three parts. The first part is the
label (+1 or −1), which occupies one dimension in the vec-
tor as a real value (denoted by R in the scheme above).

The second part and the third part store the context of the
first and second placeholder, respectively. Each context con-
tains a sub-part for each possible connector symbol. Each of
these subparts contains one bit (denoted by X in the above
scheme) for each possible word type. So if there are t word
types, the overall length of the vector is 1 + n · t + n · t. We
encode a context as follows in the vector: If there is a link
with connector con that points to a word w, we first select
the sub-part that corresponds to the connector symbol con.
Within this sub-part, we set all bits to 1 that correspond to
a type that w has.

The vectors are still grouped according to the bridges. Af-
ter the Discovery Phase, we pass each group separately to an
SVM. We used SVMLight [18] with its default parameters.
The SVM produces a model for each group, i.e. basically
a function from patterns to real values (negative values for
negative patterns and positive values for positive ones). To
classify a new pattern in the Testing Phase, we first iden-
tify its bridge group. If the pattern does not belong to a
known group, we give it the label −∞. Else, we translate
the pattern to a feature vector and then apply the model of
its group. Note that both the kNN classifier and the SVM
classifier output a real value that can be interpreted as the
confidence of the classification. Thus, it is possible to rank
the output pairs by their confidence.

3. EXPERIMENTS

3.1 Setup
We implemented our approach in a system called Leila

(Learning to Extract Information by Linguistic Analysis).
We ran Leila on different corpora with increasing hetero-
geneity4: Wikicomposers (all 872 Wikipedia articles about
composers), Wikigeography (all 313 Wikipedia pages about
the geography of countries), Wikigeneral (78141 random
Wikipedia articles) and Googlecomposers (492 documents
as delivered by a Google ”I’m feeling lucky” search for com-
posers’ names). Since the querying for Googlecomposers was
done automatically, this corpus includes spurious advertise-
ments as well as pages with no proper sentences at all.

We tested Leila on different target relations with in-
creasing complexity: The birthdate-relation (e.g. ”Chopin”
/ ”1810”), the synonymy-relation (e.g. ”UN”/”United Na-
tions”) and the instanceOf-relation (e.g. ”Chopin” /
”composer”).

We compared Leila to different competitors. We only
considered competitors that, like Leila, extract the infor-
mation from a corpus without using other Internet sources.
We wanted to avoid running the competitors on our own cor-
pora or on our own target relations, because we could not
be sure to achieve a fair tuning of the competitors. Hence
we ran Leila on the corpora and the target relations that
our competitors have been tested on by their authors. We
compare the results of Leila with the results reported by
the authors. Our competitors, together with their respective
corpora and relations, are the following: TextToOnto5 can
extract (i.a.) the instanceOf relation by shallow pattern
matching and takes arbitrary HTML documents as input.
Text2Onto [10] (currently under development) is the suc-
cessor of TextToOnto. Snowball [1] uses the slot-extraction
paradigm and has been used with the headquarters rela-
tion. It was trained on a collection of some thousand doc-
uments, but for copyright reasons, we only had access to

4See [30] for more details on the experimental setup and
results
5http://www.sourceforge.net/projects/texttoonto



the test collection (150 text documents). The CV-system
[11] uses context to assign a concept to an entity. This ap-
proach is restricted to the instanceOf-relation, but it can
classify instances even if the corpus does not contain explicit
definitions. In the original paper, the system was run on a
collection of 1880 files from the Lonely Planet Internet site6.

For the evaluation, the output pairs of the system have
to be compared to a table of ideal pairs. If O denotes the
multi-set of the output pairs and I denotes the multi-set of
the ideal pairs, then precision p, recall r, and their harmonic
mean F1 can be computed as

r =
|O ∩ I|
|I| p =

|O ∩ I|
|O| F1 =

2× r × p

r + p

We estimated precision and recall by extracting the ideal
pairs manually for a sub-portion of the corpora. We report
confidence intervals for the estimates for α = 95% (see [30]
for details). We measure precision at different levels of recall
and report the values for the best F1 value. We use the
original Ideal Metric for Snowball (see [1]) and the Relaxed
Ideal Metric for the CV-system (see [30]).

3.2 Results
Table 1 summarizes our experimental results with Leila

on different relations. For the birthdate relation, we used
Edward Morykwas’ list of famous birthdays7 as examples.
Leila performed very well. For the synonymy relation we
used all pairs of proper names that share the same synset
in WordNet as examples (e.g. ”UN”/”United Nations”). As
counterexamples, we chose all pairs of nouns that are not
synonymous in WordNet (e.g. ”rabbit”/”composer”). Leila
performed well.

For the instanceOf relation, we used all pairs of a
proper name and its lowest non-compound super-concept
from WordNet as examples. We used all pairs of a common
noun and an incorrect super-concept from WordNet as coun-
terexamples. Our tough evaluation policy lowered Leila’s
results: Our ideal pairs include pairs deduced by resolving
semantic ambiguities, which decreases Leila’s recall. Fur-
thermore, our evaluation policy demands that non-defining
concepts like friend, member or successor not be chosen as
instance concepts, which decreases Leila’s precision. Thus,
compared to the gold standard of humans, the performance
of Leila can be considered reasonably good.

To test whether heterogeneity influences Leila, we ran it
on the Wikigeneral corpus and finally on the Googlecom-
posers corpus. The performance dropped in these increas-
ingly challenging tasks, but Leila could still produce useful
results.

Table 2 shows the results for comparing Leila against
various competitors (with Leila in boldface). Text2Onto
seems to have a precision comparable to ours, although the
small number of found pairs does not allow a significant con-
clusion. Both Text2Onto and TextToOnto have drastically
lower recall than Leila.

For Snowball, we only had access to the test corpus. Hence
we trained Leila on a small portion (3%) of the test doc-
uments and tested on the remaining ones. Leila showed a
very high precision and a good recall – even though Snowball
was trained on a much larger training collection.

For the CV-System, we first used the Lonely Planet cor-
pus as in the original paper [11]. Since the explicit defini-
tions that our system relies on were sparse in the corpus,
Leila performed worse than the competitor. In a second

6http://www.lonelyplanet.com/
7http://www.famousbirthdates.com

experiment, we had the CV-system run on the Wikicom-
posers corpus. This time, our competitor performed worse,
because our ideal table is constructed from the definitions
in the text, which the CV-system is not designed to follow.

4. CONCLUSION AND OUTLOOK
We proposed to extend the pattern matching approach

for information extraction by using deep linguistic struc-
tures instead of shallow text patterns. We showed how deep
linguistic structures can be represented suitably for machine
learning. We proved that the problem of false samples does
not question the pattern matching approach. We imple-
mented our approach and we demonstrated that our system
Leila outperforms existing competitors.

Our current implementation leaves room for future work.
For example, the linkages allow for more sophisticated
ways of resolving anaphoras or matching patterns. Leila
could learn numerous interesting relations (e.g. country /
president or isAuthorOf) and build up an ontology from
the results with high confidence. Leila could acquire and
exploit new corpora on its own (e.g. read newspapers) and
it could use its knowledge to acquire and structure its new
knowledge more efficiently. We plan to exploit these possi-
bilities in our future work.
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Table 1: Results with different relations
Corpus Relation System #D #O #C #I Precision Recall F1 %E
Wikicomposers birthdate Leila(SVM) 87 95 70 101 73.68% ± 8.86% 69.31% ± 9.00% 71.43% 4.29%
Wikicomposers birthdate Leila(kNN) 87 90 70 101 78.89% ± 8.43% 70.30% ± 8.91% 74.35% 4.23%
Wikigeography synonymy Leila(SVM) 81 92 74 164 80.43% ± 8.11% 45.12% ± 7.62% 57.81% 5.41%
Wikigeography synonymy Leila(kNN) 81 143 105 164 73.43% ± 7.24% 64.02% ± 7.35% 68.40% 4.76%
Wikicomposers instanceOf Leila(SVM) 87 685 408 1127 59.56% ± 3.68% 36.20% ± 2.81% 45.03% 6.62%
Wikicomposers instanceOf Leila(kNN) 87 790 463 1127 58.61% ± 3.43% 41.08% ± 2.87% 48.30% 7.34%
Wikigeneral instanceOf Leila(SVM) 287 921 304 912 33.01% ± 3.04% 33.33% ± 3.06% 33.17% 3.62%
Googlecomposers instanceOf Leila(SVM) 100 787 210 1334 26.68% ± 3.09% 15.74% ± 1.95% 19.80% 4.76%
Googlecomposers instanceOf Leila(kNN) 100 840 237 1334 28.21% ± 3.04% 17.77% ± 2.05% 21.80% 8.44%
Googlec.+Wikic. instanceOf Leila(SVM) 100 563 203 1334 36.06% ± 3.97% 15.22% ± 1.93% 21.40% 5.42%
Googlec.+Wikic. instanceOf Leila(kNN) 100 826 246 1334 29.78% ± 3.12% 18.44% ± 2.08% 22.78% 7.72%

#O – number of output pairs #D – number of documents in the hand-processed sub-corpus
#C – number of correct output pairs %E – proportion of example pairs among the correct output pairs
#I – number of ideal pairs Recall and Precision with confidence interval at α = 95%

Table 2: Results with different competitors
Corpus M Relation System #D #O #C #I Precision Recall F1
Snowball corp. S headquarters Leila(SVM) 54 92 82 165 89.13%± 6.36% 49.70%± 7.63% 63.81%
Snowball corp. S headquarters Leila(kNN) 54 91 82 165 90.11%± 6.13% 49.70%± 7.63% 64.06%
Snowball corp. S headquarters Snowball 54 144 49 165 34.03%± 7.74% 29.70%± 6.97% 31.72%
Snowball corp. I headquarters Leila(SVM) 54 50 48 126 96.00%± 5.43% 38.10%± 8.48% 54.55%
Snowball corp. I headquarters Leila(kNN) 54 49 48 126 97.96%± 3.96% 38.10%± 8.48% 54.86%
Snowball corp. I headquarters Snowball 54 64 31 126 48.44%±12.24% 24.60%± 7.52% 32.63%
Wikicomposers S instanceOf Leila(SVM) 87 685 408 1127 59.56%± 3.68% 36.20%± 2.81% 45.03%
Wikicomposers S instanceOf Leila(kNN) 87 790 463 1127 58.61%± 3.43% 41.08%± 2.87% 48.30%
Wikicomposers S instanceOf Text2Onto 87 36 18 1127 50.00% 1.60%± 0.73% 3.10%
Wikicomposers S instanceOf TextToOnto 87 121 47 1127 38.84%± 8.68% 4.17%± 1.17% 7.53%
Wikicomposers R instanceOf Leila(SVM) 87 336 257 744 76.49%± 4.53% 34.54%± 3.42% 47.59%
Wikicomposers R instanceOf Leila(kNN) 87 367 276 744 75.20%± 4.42% 37.10%± 3.47% 49.68%
Wikicomposers R instanceOf CV-system 87 134 30 744 22.39% 4.03%± 1.41% 6.83%
Lonely Planet R instanceOf Leila(SVM) – 159 42 289 26.42%± 6.85% 14.53%± 4.06% 18.75%
Lonely Planet R instanceOf Leila(kNN) – 168 44 289 26.19%± 6.65% 15.22%± 4.14% 19.26%
Lonely Planet R instanceOf CV-system – 289 92 289 31.83%± 5.37% 31.83%± 5.37% 31.83%

M – Metric (S: Standard, I: Ideal Metric, R: Relaxed Ideal Metric). Other abbreviations as in Table 1
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