
The YAGO-NAGA Approach to Knowledge Discovery

Gjergji Kasneci, Maya Ramanath, Fabian Suchanek, Gerhard Weikum
Max Planck Institute for Informatics
D-66123 Saarbruecken, Germany

kasneci,ramanath,suchanek,weikum@mpi-inf.mpg.de

ABSTRACT
This paper gives an overview on the YAGO-NAGA ap-
proach to information extraction for building a conve-
niently searchable, large-scale, highly accurate knowl-
edge base of common facts. YAGO harvests infoboxes
and category names of Wikipedia for facts about indi-
vidual entities, and it reconciles these with the taxo-
nomic backbone of WordNet in order to ensure that all
entities have proper classes and the class system is con-
sistent. Currently, the YAGO knowledge base contains
about 19 million instances of binary relations for about
1.95 million entities. Based on intensive sampling, its
accuracy is estimated to be above 95 percent. The pa-
per presents the architecture of the YAGO extractor
toolkit, its distinctive approach to consistency checking,
its provisions for maintenance and further growth, and
the query engine for YAGO, coined NAGA. It also dis-
cusses ongoing work on extensions towards integrating
fact candidates extracted from natural-language text
sources.

1. INTRODUCTION

Universal, comprehensive knowledge bases have been
an elusive AI goal for many years. Ontologies and the-
sauri such as OpenCyc, SUMO, WordNet, or UMLS
(for the biomedical domain) are achievements along this
route. But they are typically focused on intensional
knowledge about semantic classes. For example, they
would know that mathematicians are scientists, that
scientists are humans (and mammals and vertebrates,
etc.); and they may also know that humans are either
male or female, cannot fly (without tools) but can com-
pose and play music, and so on. However, the currently
available ontologies typically disregard the extensional
knowledge about individual entities: instances of the
semantic classes that are captured and interconnected
in the ontology. For example, none of the above men-
tioned ontologies knows more than a handful of con-
crete mathematicians (or famous biologists etc.). To-
day, the best source for extensional knowledge is prob-
ably Wikipedia, providing a wealth of knowledge about
individual entities and their relationships. But most of

.

this knowledge is only latent, by being embedded in the
natural-language text of Wikipedia articles or, in the
best case, reflected in the semistructured components
of Wikipedia: infoboxes and the category system.

A comprehensive knowledge base should know all in-
dividual entities of this world (e.g., Nicolas Sarkozy),
their semantic classes (e.g., Sarkozy isa Politician), re-
lationships between entities (e.g., Sarkozy presidentOf
France), as well as validity times and confidence values
for the correctness of such facts. Moreover, it should
come with logical reasoning capabilities and rich sup-
port for querying. The benefits from solving this grand
challenge would be enormous. Potential applications
include but would not be limited to:

1. a machine-readable, formalized encyclopedia that
can be queried with high precision like a semantic
database;

2. an enabler for semantic search on the Web, for
detecting entities and relations in Web pages and
reasoning about them in expressive (probabilistic)
logics;

3. a backbone for natural-language question answer-
ing that would aid in dealing with entities and
their relationships in answering who/where/when/
etc. questions;

4. a key asset for machine translation (e.g., English
to German) and interpretation of spoken dialogs,
where world knowledge provides essential context
for disambiguation;

5. a catalyst for acquisition of further knowledge and
largely automated maintenance and growth of the
knowledge base.

To illustrate the first two points, consider the following
difficult “knowledge queries” that a student, journalist,
or researcher may pose to the Web:

Q1: Which Grammy winners were born in Europe?
Q2: Which French politicans are married to singers?
Q3: Which Nobel prize winners had an academic advi-
sor who graduated from the same university?
Q4: Give me a comprehensive list of HIV drugs that
inhibit proteases (a specific family of enzymes).

Figure 1: Excerpt of the YAGO Knowledge Base

Regardless of how well these information needs are
formulated as keyword queries or question phrases, cur-
rent search engines would hardly produce good answers.
In the best case, the user would have to browse through
many potentially relevant pages and manually compile
the bits and pieces of the desired answers. A large
knowledge base would support precise query formula-
tion (not necessarily in natural language) that explicitly
indicates entities and relations, and would provide the
best answers in a concise manner.

This paper gives an overview of the YAGO-NAGA1

approach to automatically building and maintaining a
conveniently searchable, large and highly accurate knowl-
edge base, by applying information-extraction (IE) meth-
ods to Wikipedia and other sources of latent knowledge.
The project started in summer 2006 at the Max Planck
Institute for Informatics, with continuous enhancements
and extensions.

The YAGO knowledge base represents all facts in the
form of unary and binary relations: classes of individ-
ual entities, and pairs of entities connected by specific
relationship types. This data model can be seen as a
typed graph with entities and classes corresponding to
nodes and relations corresponding to edges. It can also
be interpreted as a collection of RDF triples with two
adjacent nodes and their connecting edge denoting a

1YAGO = Yet Another Great Ontology
NAGA = Not Another Google Answer

(subject, predicate, object) triple. Figure 1 shows an
excerpt of the knowledge base. The knowledge base
is publicly available at http://www.mpi-inf.mpg.de/
~suchanek/yago. It can be queried for knowledge dis-
covery by the NAGA search engine. An online demo is
accessible at http://www.mpi-inf.mpg.de/~kasneci/
naga.

Section 2 outlines the architecture of YAGO. Section
3 presents the extractor toolkit for building the YAGO
core knowledge base. Section 4 presents the consistency
checking methods, which ensure the high accuracy of
YAGO’s facts. Section 5 discusses our ongoing work
on how YAGO can be automatically maintained and
further grown. Section 6 presents the NAGA model and
system for querying YAGO and ranking search results.

2. SYSTEM ARCHITECTURE

The YAGO architecture is depicted in Figure 2. In
contrast to many other IE projects, YAGO emphasizes
high accuracy and the consistency of the harvested knowl-
edge rather than aiming for high recall (coverage) of
facts. YAGO primarily gathers its knowledge by inte-
grating information from Wikipedia and WordNet. It
performs rule-based IE on the infoboxes and category
system of Wikipedia, and reconciles the resulting facts
with WordNet’s taxonomical class system. This is done
by performing consistency checks whenever a new fact
is considered for addition to the knowledge base. This
approach resulted in the YAGO core knowledge base [18,
19], currently containing 249,015 classes, 1,941,578 in-

dividual entities, and about 19 million facts (instances
of binary relations) for 93 different relations. Exten-
sive sampling showed that the accuracy is at least 95
percent [19], and many of the remaining errors (false
positives) are due to entries in Wikipedia itself (which
we considered as ground truth).

As the rule-based core extractors are limited in cover-
age, YAGO can also employ pattern-, NLP- and learning-
based IE techniques [1, 5, 15] on text sources such as
Wikipedia texts, news articles, research literature, or
Web pages of interest and clear style. These techniques,
in combination with the diversity and mixed quality of
the sources, introduce a higher risk of degrading in pre-
cision, and are computationally much more expensive.
Therefore, the text-oriented harvesting of YAGO is car-
ried out in two phases. The gathering phase employs
recall-oriented IE methods, and aims at high through-
put. The output is interpreted as a set of fact hypothe-
ses. Subsequently, the scrutinizing phase assesses the
hypotheses against the existing knowledge base, in a
batched manner, and filters out facts that show high in-
dication of being inconsistent with essential invariants
and prior knowledge (e.g., that a person’s birth place is
unique and that certain cities are located in Europe so
that an American-born person cannot be born in such
a city).

Figure 2: The YAGO Architecture

3. YAGO CORE EXTRACTORS

Wikipedia Infoboxes. Wikipedia has two kinds of -
almost structured - information components on article
pages that can be effectively harvested: the infoboxes
and the category system. Infoboxes are collections of at-
tribute name-value pairs. They are often based on tem-
plates and then reused for important types of entities
such as countries, companies, scientists, music bands,
sports teams, etc. For example, the infobox for Nico-
las Sarkozy gives us data such as birth date = 28 Jan-
uary 1955, birth place = Paris, occupation = lawyer,
and alma mater = University of Paris X: Nanterre.

YAGO uses a suite of rules for frequently used infobox
attributes to extract and normalize the corresponding
values. For example, the spouse attribute is mapped to
the marriedTo relation, and the extracted fact then is
Nicolas Sarkozy marriedTo Carla Bruni. YAGO does
not attempt to extract all infobox attributes, as their
“long tail” has a lot of naming diversity and noise (see
[20, 21] for a more recent, universal attempt at harvest-
ing infoboxes).
Wikipedia Categories. As for the category system,
the Wikipedia community has manually placed (the ar-
ticle about) Nicolas Sarkozy into categories such as:
Presidents of France, Légion d’honneur recipients, or
Alumni of Sciences Po (the Paris Institute of Political
Studies). These give YAGO clues about instanceOf re-
lations, and we can infer that the entity Nicolas Sarkozy
is an instance of the classes PresidentsOfFrance, Lé-
gionD’HonneurRecipients, and AlumniOfSciencesPo.
Occasionally, YAGO encounters a misleading category
name that does not indicate a class membership (in-
stanceOf). An example is the category Hollywood Walk
of Fame, which includes many actors and musicians.
Semantically, however, these people are not instances
of a class Walk (which would be a subclass of Motion),
nor are they instances of some superclass Awards but
rather awards winners which in turn would be a sub-
class of humans. YAGO employs linguistic processing
(noun phrase parsing) and also some heuristics (e.g.,
the head word in the noun phrase should be in plural
form), in order to cope with these pitfalls and achieve
high accuracy in harvesting the category system.
Ongoing Work: Temporal Validity. The world
is dynamic, and facts change with time. When we
ran YAGO on Wikipedia in spring 2007, we extracted
the fact Jacques Chirac presidentOf France, seemingly
contradicting our current result Nicolas Sarkozy presi-
dentOf France. To resolve this situation, we need tem-
poral annotations for facts. To ensure that our knowl-
edge model is not inflated with ad-hoc features, we de-
cided to adapt the reification technique of RDF and use
our standard binary-relation approach to represent va-
lidity times. This works as follows. Both of the above
facts have identifiers, say Id1 (for the fact about Chirac)
and Id2 (for the fact about Sarkozy), to which we can
refer in other facts. We create additional facts like Id1
ValidSince 17 May 1995, Id1 ValidUntil 16 May 2007,
and Id2 ValidSince 17 May 2007. This technique is gen-
eral, it can also be used to represent arbitrary ternary
and higher-arity relations in our model. Likewise, meta-
relations such as witnesses for a fact - remembering
sources that support a fact’s validity, use the same rep-
resentation.

In principle, YAGO could also handle divorces and
identify spouses for specific time periods, but often this
kind of information is not available in the semistruc-
tured parts of Wikipedia. Therefore, we have starting
working on specialized text-oriented extractors with the
specific target of detecting validity times. One problem
in this task is that temporal statements often refer to
relative timepoints (e.g., last Monday), have different

granularities such as “May 2007” vs. “17 May 2007”, or
are incomplete (e.g., showing either an “until” or “since”
statement but not both, even for terminated intervals).
To deal with these situations, we represent every time-
point as a pair of (earliest, latest) intervals and use
plus/minus infinity for missing information in such an
interval. As we find more accurate or complete time
statements or gather more evidence for certain facts in
the IE process, we can refine the temporal facts in the
knowledge base [23].

4. YAGO CONSISTENCY CHECKERS

Rationale. YAGO pays particular attention to the
consistency of its knowledge base. Solely performing
IE on infoboxes and categories of Wikipedia may re-
sult in a large but incoherent collection of facts: re-
dundant and potentially inconsistent, overly specific in
some parts and left blank in others in an arbitrary way.
For example, we may know that Nicolas Sarkozy is an
instance of PresidentsOfFrance, but we may not be able
to automatically infer that he is also an instance of Pres-
idents and most likely also an instance of FrenchPeople.
Likewise, the fact that he is a president (or minister of
the interior or mayor to also include former positions)
does not automatically tell us that he is a politician.
To overcome these problems, YAGO intensively uses
the WordNet thesaurus and integrates the facts from
Wikipedia with the taxonomic backbone provided by
WordNet, using techniques outlined in the rest of this
section.
Class Hierarchy. YAGO initializes its class system by
importing all WordNet classes and their hypernymy/
hyponymy (superclass/subclass) relations. Each indi-
vidual entity that YAGO discovers in Wikipedia needs
to be mapped into at least one of the existing YAGO
classes. If this fails, the entity and its related facts
are not admitted to the knowledge base. Analogously,
classes that are derived from Wikipedia category names
such as PresidentsOfFrance need to be mapped, with a
subclassOf relationship, to one or more proper super-
classes such as Presidents or FrenchPeople. These pro-
cedures ensure that we can maintain a consistent knowl-
edge base, where consistency eliminates dangling enti-
ties or classes and also guarantees that the subclassOf
relation is acyclic. The empirically assessed accuracy of
the subclassOf relation is around 97 percent.
Type Conditions. As all entities are typed by their
assignment to one or more classes, binary relations have
a type signature as well. For example, the isCEOof re-
lation can be specified to have a domain BusinessPerson
or simply Person and a range Company (where we de-
note relations as powerset functions). When the extrac-
tor produces a candidate fact like Nicolas Sarkozy is-
CEOof France, we can reject it because the second argu-
ment, France, is not a company. Similarly, the hypothe-
sis Nicolas Sarkozy marriedTo Élysée Palace which may,
perhaps, be incorrectly inferred from sentences such as
“Nicolas Sarkozy loves his work with the Élysée Palace”
(or from an incorrect interpretation of the infobox at-

tribute Residence), is falsified by the type invariant that
marriages are between persons.
Ongoing Work: Constraints on Relations. A very
powerful constraint for the consistency of IE results is
declaring a relation to be transitive and acyclic (or re-
quiring that its transitive closure is acyclic). The class
hierarchy is one important usage case; the locatedIn re-
lation between geographic entities is another one. Going
even further, we are considering support for functional
dependencies, inclusion dependencies, and inverse rela-
tions. For example, a person can have only one birth
place, which would allow us to prune out many spurious
candidates for alternative birth places that we may see
in Web pages. As for inclusion dependencies, we can
derive Paris locatedIn France from the fact Paris cap-
italOf France, without necessarily seeing it in explicit
form. Finally, the presidentOf fact would be an exam-
ple for exploiting inverse relations. Once we accept that
Nicolas Sarkozy presidentOf France, we could automat-
ically infer that France hasPresident Nicolas Sarkozy
(for the same time interval).

5. GROWING YAGO

Keeping YAGO Up-To-Date. We can maintain the
YAGO knowledge base, with its current scope, by pe-
riodically re-running the extractors on Wikipedia and
WordNet. It takes a few hours to build the entire knowl-
edge base. When validity times or intervals can be prop-
erly inferred, this would retain previously compiled facts
(e.g., former CEOs) as long as they do not cause any
inconsistencies.
Adding Natural-Language Text Sources. Further
growth of YAGO, beyond the harvesting of infoboxes
and category systems, calls for text-oriented IE with
more or less powerful NLP capabilities. Our own tool
LEILA [17] can be employed for this purpose. It uses a
dependency-grammar parser for deep parsing of natural-
language sentences, with heuristics for anaphora reso-
lution (e.g., pronouns referring to subjects or objects in
a preceding sentence). This produces a tagged graph
representation, whose properties can be encoded as fea-
tures for a statistical learner (e.g., an SVM) that clas-
sifies fact candidates into acceptable facts vs. false hy-
potheses. LEILA provides reasonably good accuracy,
but requires about a minute to process a long Wikipedia
article on a standard PC, and works for one specific re-
lation at a time. Simpler NLP methods, such as part-of-
speech tagging (for word categories: nouns, verbs, etc.),
are much faster but would have significantly lower pre-
cision. Statistics, like frequencies of witnesses, can be
used to improve precision, but proper tuning of statis-
tical thresholds is all but easy. The YAGO architecture
supports all these approaches. However, with the open
issues in understanding the three-way tradeoffs between
precision, recall, and efficiency, we do not yet employ
these techniques at large scale.
Ongoing Work. For growing YAGO we can leverage
the existing YAGO core in several ways. We believe
that the core contains more or less all entities of inter-

est and their most important classes. For example, all
notable politicians, athletes, pop stars, movies, cities,
rivers, etc. should have a Wikipedia entry, and thus
are included in YAGO, too. Certainly, this does not
hold for classes like computer scientists, medical drugs,
etc. But we could incorporate other sources such as
DBLP or UMLS, and adapt the YAGO extractors to
them. With the YAGO core as semantic backbone, we
can quickly test sentences, paragraphs, or entire Web
pages as to whether they contain one or two interest-
ing entities. And when aiming at a particular binary
relation, we can exploit our type system: a sentence or
paragraph is promising only if it contains two entities
of the proper types. For example, for hypothesizing a
fact of the isCEOof relation, a sentence must contain a
person and a company to be worth undergoing deeper
analysis. Testing the type of an entity is a fast lookup
in the core knowledge base.

To preserve the consistency of YAGO when adding
new facts gathered with “riskier” IE methods, we can
utilize the type and constraint checkers that YAGO al-
ready has. For efficiency, we batch newly acquired facts
and run the consistency checking procedures for sev-
eral thousand hypotheses together, dropping those that
violate vital checks or too many “soft constraints”.

6. QUERYING YAGO BY NAGA

Query Language. For querying the YAGO knowledge
base, we have designed a query language that builds on
the concepts of SPARQL (the W3C standard for query-
ing RDF data), but extends these capabilities by more
expressive pattern matching. Our prototype system,
NAGA (Not Another Google Answer) [10], implements
this query language and provides a statistical ranking
model for query results.

A query is a conjunction of fact templates, where each
template would have to be matched by an edge and its
incident nodes in the knowledge graph. For example,
the first two example queries of Section 1 can be ex-
pressed as follows:
Q1: $x hasWonPrize GrammyAward,

$x bornIn $y,
$y locatedIn Europe

Q2: $x isa politician,
$x citizenOf France,
$x marriedTo $y,
$y isa singer

where $x and $y are variables for which we are seek-
ing bindings so that all query patterns are matched to-
gether.

The relation names in the query can also be regular
expressions, which have to be matched by an entire path
in the knowledge graph. This is a powerful way of deal-
ing with transitive relations and variants of relations
where the user may not exactly know by which relations
the entities of interest are connected. For example, if
the bornIn relation actually refers to cities and the lo-
catedIn relation captures a city-county-state-country hi-
erarchy, we should replace the last condition in Q1 by

the fact template $y (locatedIn)* Europe. And if we do
not care whether the persons that we are looking for are
born in Europe or are citizens of a European country,
we may use the template $y (citizenOf | bornIn | origi-
natesFrom).(locatedIn)* Europe instead of the last two
conditions of Q1. Regular expressions are also helpful in
dealing with the class hierarchy in a flexible way. In Q2
the relation label isa is actually a shorthand notation for
the regular expression instanceOf.(subclassOf)*, thus
enabling ministers or mayors, which are subclasses of
politicians, to be returned as query results.

The query language also provides support for formu-
lating temporal conditions on the validity of the facts of
interest. For example, if we want to retrieve all French
presidents whose terms started in this millenium, we
can phrase this as:

f: ($x presidentOf France),
(f since $t),
($t after 31 December 1999)

We are working on enhancing the query language to pro-
vide more elaborate capabilities for temporal queries.
NAGA has further advanced features, most notably, for
specifying relatedness queries among a set of entities
[10, 11]. For example, the query:

connect (Nicolas Sarkozy, Zinedine Zidane,
Gerard Depardieu, Miles Davis)

asks for commonalities or other relationships among
Sarkozy, the soccer player Zidane, the actor Depardieu,
and the trumpet player Miles Davis. A possible answer
(technically, a Steiner tree in the underlying knowledge
graph) could be that all four are recipients of the French
Légion d’honneur order.
Ranking. Whenever queries return many results, e.g.,
hundreds of (mostly unimportant) politicians, we need
ranking. NAGA employs a novel kind of statistical lan-
guage model (LM) [12, 22] for this purpose, capturing
the informativeness of a query result [10]: users prefer
salient facts or interesting facts, e.g., Nicolas Sarkozy
and not the mayor of a small provincial town. In ad-
dition, we need to consider the confidence that the re-
sult facts are indeed correct. Our IE methods assign a
confidence weight to each fact f in the knowledge base
based on the empirically assessed goodness of the ex-
tractor and the extraction target (e.g., rule-based for
birthdates vs. linguistic for birth places) and the trust-
worthiness of the fact’s witnesses s (i.e., sources from
which it was extracted). One possible way of combining
these aspects (among various options) would be:

confidence(f) =
max {accuracy(f, s)× trust(s) | s ∈ witnesses(f)}

where trustworthiness could be based on PageRank-
style authority or on empirical assessment by experts
(e.g., high for Wikipedia, low for blogs). The confi-
dence in a query-result graph that consists of multiple
facts is the product of the individual facts’ confidence
values, postulating statistical independence among the
facts.

For informativeness, NAGA employs an LM for graph-
structured data. In the following we give a simplified

explanation of the model introduced in [10]. Conceptu-
ally, we construct a statistical model for each possible
result graph g with connected edges (facts) gi, and con-
sider the probability that the query q, consisting of fact
templates qi, was generated from g:

P [q|g] =
∏
i

λP [qi|gi] + (1− λ)P [qi]

where we factorize over edges for tractability and use
P [qi] for smoothing with parameter λ (analogously to
standard LM’s). Applying Bayes’ rule, simplifying the
resulting expression and omitting sub-expressions that
do not influence the ranking of results, we obtain:

P [q|g] ∼
∏
i

P [qi|gi]
P [qi]

We can interpret 1/P [qi] as an idf-style weighting of
the individual subqueries (emphasizing the more selec-
tive patterns in the query). The main parameters to
be estimated are the P [qi|gi] values, which reflect infor-
mativeness for the given query. We use a “background
corpus” for this purpose, either a large Web sample or
the entirety of Wikipedia texts. We compute the num-
ber of witnesses for gi, that is, the frequency of the
two entities (or classes) in gi co-occurring (in the same
sentence, paragraph, or Web page). Analogously, the
number of witnesses for qi is the frequency of the non-
variable parts of qi occurring together. Our current im-
plementation precomputes these statistics based on the
Wikipedia corpus. With these ingredients we can finally
set

P [qi|gi] ≈
#witnesses(gi)
#witnesses(qi)

For example, as partial results to query Q1, famous
Grammy winners such as Eric Clapton, Phil Collins,
or Enya should be among the highest ranked results.

For the overall scoring of query results, NAGA uses
a weighted linear combination of informativeness and
confidence:

score(q, g) = α
∏
i

P [qi|gi]
P [qi]

+ (1−α)
∏
i

confidence(gi)

Ongoing Work: Personalization. The notion of in-
formativeness is, strictly speaking, a subjective mea-
sure: an individual user wants to see a salient result
that is also interesting to her. This calls for a person-
alized ranking model or at least a user-group-specific
model. An elegant property of the LM approach pur-
sued in NAGA is that we can easily compose multiple
LM’s using a probabilistic mixture model. We can es-
timate parameters of a user- or community-specific LM
and combine this with a global LM, both models using
the same mathematical structure but different parame-
ters.

For the personalized LM, we monitor the history of
queries and browsing interactions on the online knowl-
edge base. A click on a fact is interpreted as positive
feedback that the fact is interesting to the user, and this

evidence is spread to the graph neighborhood, with ex-
ponential decay and attention to the edge types along
which propagation is meaningful [7]. As an example,
assume that a user has intensively explored epic movies
and orchestral music, and then poses query Q1. The
personalized ranking would prioritize European film-
music composers such as Ennio Morricone, Hans Zim-
mer, or Javier Navarrete.

7. CONCLUSION

The YAGO core is publicly available and has been im-
ported into and integrated with various other knowledge-
management projects including DBpedia (dbpedia.org),
SUMO (www.ontologyportal.org), UMBEL (umbel.
org), and Freebase (www.freebase.com). Our ongoing
work to improve YAGO mostly centers around making
it larger while retaining its high accuracy. This entails
deeper considerations on scalability issues, for example,
by utilizing database-style query processing and opti-
mization techniques, along the lines of [9].

YAGO shares many of its goals and methodologies
with parallel projects along related lines. These include
Avatar [14], Cimple/DBlife [6, 16], DBpedia [2], Know-
ItAll/TextRunner [8, 3, 4], Kylin/KOG [20, 21], and
the Libra technology [13, 24] (and probably more). To-
gether they form an exciting trend of leading research
towards the elusive goal of machine-readable, compre-
hensive knowledge bases.

8. REFERENCES
[1] Eugene Agichtein: Scaling Information Extraction

to Large Document Collections. IEEE Data Eng.
Bull. 28(4), 2005

[2] Sören Auer, Christian Bizer, Georgi Kobilarov,
Jens Lehmann, Richard Cyganiak, Zachary G.
Ives: DBpedia: A Nucleus for a Web of Open
Data. ISWC/ASWC 2007

[3] Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matthew Broadhead, Oren Etzioni:
Open Information Extraction from the Web.
IJCAI 2007

[4] Michael J. Cafarella, Christopher Re, Dan Suciu,
Oren Etzioni: Structured Querying of Web Text
Data: A Technical Challenge. CIDR 2007

[5] Hamish Cunningham: An Introduction to
Information Extraction. In: Encyclopedia of
Language and Linguistics, 2nd Edition, Elsevier,
2005

[6] Pedro DeRose, Warren Shen, Fei Chen, AnHai
Doan, Raghu Ramakrishnan: Building Structured
Web Community Portals: A Top-Down,
Compositional, and Incremental Approach. VLDB
2007

[7] Minko Dudev, Shady Elbassuoni, Julia
Luxenburger, Maya Ramanath, Gerhard Weikum:
Personalizing the Search for Knowledge. PersDB
2008.

[8] Oren Etzioni, Michael J. Cafarella, Doug Downey,
Ana-Maria Popescu, Tal Shaked, Stephen

Soderland, Daniel S. Weld, Alexander Yates:
Unsupervised Named-Entity Extraction from the
Web: An Experimental Study. Artif. Intell.
165(1), 2005

[9] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay
Jain, Luis Gravano: Towards a Query Optimizer
for Text-Centric Tasks. ACM Trans. Database
Syst. 32(4), 2007

[10] Gjergji Kasneci, Fabian M. Suchanek, Georgiana
Ifrim, Maya Ramanath, Gerhard Weikum:
NAGA: Searching and Ranking Knowledge. ICDE
2008

[11] Gjergji Kasneci, Maya Ramanath, Mauro Sozio,
Fabian M. Suchanek, Gerhard Weikum: STAR:
Steiner Tree Approximation in
Relationship-Graphs. ICDE 2009

[12] Xiaoyong Liu, W. Bruce Croft: Statistical
Language Modeling for Information Retrieval.
Annual Review of Information Science and
Technology 39, 2004

[13] Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong
Wen, Wei-Ying Ma: Web Object Retrieval.
WWW 2007

[14] Frederick Reiss, Sriram Raghavan, Rajasekar
Krishnamurthy, Huaiyu Zhu, Shivakumar
Vaithyanathan: An Algebraic Approach to
Rule-Based Information Extraction. ICDE 2008

[15] Sunita Sarawagi: Information Extraction.
Foundations and Trends in Databases 2(1), 2008

[16] Warren Shen, AnHai Doan, Jeffrey F. Naughton,
Raghu Ramakrishnan: Declarative Information
Extraction Using Datalog with Embedded
Extraction Predicates. VLDB 2007

[17] Fabian M. Suchanek, Georgiana Ifrim, Gerhard
Weikum: Combining Linguistic and Statistical
Analysis to Extract Relations from Web
Documents. KDD 2006

[18] Fabian M. Suchanek, Gjergji Kasneci, Gerhard
Weikum: YAGO: a Core of Semantic Knowledge.
WWW 2007

[19] Fabian Suchanek, Gjergji Kasneci, Gerhard
Weikum: YAGO: A Large Ontology from
Wikipedia and WordNet. Journal of Web
Semantics, 2008

[20] Fei Wu, Daniel S. Weld: Autonomously
Semantifying Wikipedia. CIKM 2007

[21] Fei Wu, Daniel S. Weld: Automatically Refining
the wikipedia Infobox Ontology. WWW 2008

[22] ChengXiang Zhai, John D. Lafferty: A risk
minimization framework for information retrieval.
Inf. Process. Manage. 42(1), 2006

[23] Qi Zhang, Fabian M. Suchanek, Lihua Yue,
Gerhard Weikum: TOB: Timely Ontologies for
Business Relations. WebDB 2008

[24] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang,
Wei-Ying Ma: Simultaneous Record Detection
and Attribute Labeling in Web Data Extraction.
KDD 2006

