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Abstract
An ontology is a computer-processable collection of knowledge about the world.
This thesis explains how an ontology can be constructed and expanded auto-
matically. The proposed approach consists of three contributions:

1. A core ontology, YAGO.
YAGO is an ontology that has been constructed automatically. It com-
bines high accuracy with large coverage and serves as a core that can be
expanded.

2. A tool for information extraction, LEILA.
LEILA is a system that can extract knowledge from natural language
texts. LEILA will be used to find new facts for YAGO.

3. An integration mechanism, SOFIE.
SOFIE is a system that can reason on the plausibility of new knowl-
edge. SOFIE will assess the facts found by LEILA and integrate them
into YAGO.

Each of these components comes with a fully implemented system. Together,
they form an integrative architecture, which does not only gather new facts,
but also reconcile them with the existing facts. The result is an ever-growing,
yet highly accurate ontological knowledge base. A survey of applications of the
ontology completes the thesis.
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Kurzfassung
Eine Ontologie ist eine Wissenssammlung über die Welt, die von einem Com-
puter verarbeitet werden kann. Die vorliegende Dissertation beschreibt, wie
eine Ontologie automatisch erstellt und erweitert werden kann. 3 Komponenten
werden dafür vorgestellt:

1. Eine Kern-Ontologie, YAGO.
YAGO ist eine Ontologie, die automatisch erstellt wurde. Sie beinhaltet
bereits eine große Menge an Fakten mit hoher Genauigkeit. YAGO dient
als Ausgangs-Ontologie, die es zu erweitern gilt.

2. Ein System zur Informationsextraktion, LEILA.
LEILA ist eine Software, die Informationen aus natürlichsprachigen Tex-
ten extrahieren kann. LEILA wird benutzt, um neue Fakten für YAGO
zu finden.

3. Ein Integrations-Mechanismus, SOFIE.
SOFIE ist ein System, das herausfinden kann, ob ein neuer Fakt plausibel
ist. SOFIE wird die Fakten, die LEILA gefunden hat, beurteilen und sie
in YAGO integrieren.

Jede dieser Komponenten ist vollständig implementiert. Zusammen bilden sie
eine integrierte Architektur, die nicht nur neue Fakten sammeln kann, sondern
sie auch mit den bereits gesammelten Fakten vereinigen kann. Das Ergebnis
ist eine stetig wachsende Ontologie von hoher Genauigkeit. Die Dissertation
schließt mit einem Überblick über die Anwendungen der Ontologie.
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Summary

An ontology is a computer-processable collection of knowledge about the world.
This thesis explains how an ontology can be constructed and expanded auto-
matically. The proposed approach consists of three contributions: The first,
YAGO, is a core ontology. The second, LEILA, is a system that can extract in-
formation from text documents. The third, SOFIE, is an integration mechanism
that weaves the information found by LEILA into YAGO.

YAGO. YAGO [135, 136] is the core ontology. It currently knows 2 million
entities. This includes thousands of famous people, as well as cities, historic
events, and movies. It knows more that 19 million facts about them. For
example, YAGO knows the following things:

ElvisPresely is a singer
singer subClassOf person
ElvisPresely bornOnDate 1935-01-08
ElvisPresely bornIn Tupelo
Tupelo locatedIn Mississippi(state)
Mississippi(state) locatedIn USA

YAGO has been constructed automatically. Its knowledge has been extracted
from one of the most comprehensive lexicons available today, Wikipedia. The
facts from Wikipedia have been combined with the taxonomic structure of Word-
Net [59]. The key contributions of YAGO are the following:

1. Information Extraction from Wikipedia. The YAGO approach
builds on the infoboxes and category pages in Wikipedia. We present
techniques that harvest the infoboxes and category pages in a systematic
manner, yielding millions of highly accurate facts.

2. Combination with WordNet. We explain how the information from
Wikipedia can be linked to the information from WordNet [59]. This
allows the YAGO ontology to profit, on one hand, from the vast amount
of individuals known to Wikipedia, while exploiting, on the other hand,
the clean taxonomy of concepts from WordNet.

3. Quality Control. We explain how we can enforce the high accuracy of
our extraction through type checking. Type checking leverages the infor-
mation that has already been extracted to verify the plausibility of newly
extracted data.

YAGO comes with a novel knowledge representation model. It extends RDFS
and is powerful enough to reify facts. Nevertheless, we can prove that its con-
sistency is decidable. Our evaluation shows not only that YAGO is one of the
largest knowledge bases available today, but also that it has an unprecedented
quality in the league of automatically generated ontologies.

LEILA. LEILA [133, 134] is system that can extract facts from text documents.
LEILA finds patterns in the text that express a certain relation. For example,
LEILA can find out that the pattern “X was born in Y ” indicates that someone
was born in a certain place. By harvesting these patterns systematically, LEILA
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can extract, for example, all pairs of people with their birth places from a text
corpus. LEILA brings three key contributions:

1. Linguistic Analysis: LEILA uses a link-grammar representation [122]
for natural-language sentences. This allows LEILA to detect robust nat-
ural language patterns.

2. Counterexamples: LEILA takes into account counterexamples, i.e., in-
formation that is known to be wrong. This allows LEILA to identify and
discard erroneous patterns.

3. Machine Learning: LEILA uses statistical learning to generalize the
useful patterns. This process gives LEILA high yield and robust patterns.

Our theoretical analysis proves that erroneous patterns cannot disrupt the per-
formance of LEILA. Their influence converges to zero as the corpus size grows.
Our evaluation shows that LEILA outperforms state-of-the-art techniques for
information extraction.

SOFIE. It is not trivial to add the facts found by LEILA to the ontology YAGO.
For example, one needs to make sure that the new facts do not contradict
the existing ones. This is the task accomplished by SOFIE. SOFIE is a novel
model of information integration, which casts the task of information extraction
into a logical reasoning problem. In this model, word disambiguation, pattern
matching, and rule-based reasoning on the ontology all become part of one
unified framework. More precisely, SOFIE combines three capabilities in a single
system:

1. Word Disambiguation: If a word has multiple meanings, the system
can figure out the most likely meaning in a text. Different from existing
systems, however, SOFIE will automatically re-consider its choice if more
evidence for another meaning becomes available.

2. Pattern Matching: SOFIE extends LEILA and finds patterns in text
documents to extract facts. Unlike other systems, it can reason on the
plausibility of patterns and reject patterns if counter evidence becomes
available.

3. Ontological Reasoning: SOFIE makes full use of the background knowl-
edge from YAGO. SOFIE can take into account constraints on the rela-
tions, links between hypotheses and connections to the existing knowledge.

We show how the unifying model of SOFIE can be cast into a weighted MAX
SAT problem. We explain how the MAX SAT problem can be solved efficiently
in our case, and we prove an approximation guarantee. Our evaluation shows
that SOFIE can extract clean, canonicalized facts even from arbitrary, unstruc-
tured Web documents with a precision of over 90%.

A survey about applications that use YAGO already completes the thesis.
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Zusammenfassung

Eine Ontologie ist eine Wissenssammlung über die Welt, die von einem Com-
puter verarbeitet werden kann. Die vorliegende Dissertation beschreibt, wie eine
Ontologie automatisch erstellt und erweitert werden kann. 3 Komponenten wer-
den dafür vorgestellt: Die erste Komponente, YAGO, ist eine Kern-Ontologie,
die es auszubauen gilt. Die zweite Komponente, LEILA, ist ein System, das In-
formationen aus Text-Dokumenten extrahieren kann. Die dritte Komponente,
SOFIE, ist ein Integrationsmechanismus, der die von LEILA gefundenen Infor-
mationen in YAGO einfügen kann.

YAGO. YAGO [135, 136] ist die Kern-Ontologie. Sie umfasst momentan mehr
als 2 Millionen Entitäten. Dies schließt bekannte Leute des öffentlichen Lebens
ebenso ein wie Städte, historische Ereignisse, Filme und vieles mehr. YAGO
weiß mehr als 19 Millionen Fakten über die Entitäten. YAGO weiß zum Beispiel
die folgenden Dinge:

ElvisPresely ist ein Sänger
Sänger Unterklasse von Person
ElvisPresely geboren am 1935-01-08
ElvisPresely geboren in Tupelo
Tupelo liegt in Mississippi(state)
Mississippi(state) liegt in USA

YAGO wurde automatisch erzeugt. YAGO bringt drei Neuheiten:

1. Informationsextraktion aus Wikipedia. Mit YAGO können die In-
foboxen und das Kategoriensystem von Wikipedia systematisch ausgenutzt
werden. Dies liefert Millionen von hochgradig akkuraten Fakten.

2. Kombination mit WordNet. Die Information aus Wikipedia wird mit
der Information aus WordNet [59] kombiniert. Dadurch umfasst YAGO
sowohl die großen Anzahl von Individuen aus Wikipedia, als auch die
sauberen Taxonomie aus WordNet.

3. Qualitäts-Kontrolle. Die hohe Akkuratheit der YAGO-Ontologie wird
durch Typ-Checks sichergestellt. Typ-Checks nutzen die Information, die
bereits extrahiert wurde, um die Plausibiltät von neu extrahierter Infor-
mation einzuschätzen.

YAGO nutzt ein neuartiges Modell zur Wissensrepräsentation. Dieses Modell
erweitert RDFS und ist mächtig genug, um Fakten zu reifizieren. Trotzdem ist
die Konsistenz des Modells entscheidbar. Eine Evaluation beweist, dass YAGO
nicht nur eine der größten frei verfügbaren Wissensdatenbanken ist, sondern
auch eine nie da gewesene Qualität aufweist.

LEILA. LEILA [133, 134] ist ein System das Fakten aus Text-Dokumenten
extrahieren kann. LEILA findet Wortfolgen, die bestimmte Bedeutungen haben.
Zum Beispiel kann LEILA herausfinden, dass die Wortfolge “X wurde in Y
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geboren” auf den Geburtsort von X hinweist. Durch systematisches Ausnutzen
dieser Wortfolgen kann LEILA beispielsweise alle Paare aus Personen mit ihrem
Geburtsort aus einem Text-Korpus extrahieren. LEILA bringt drei Neuheiten:

1. Linguistische Analyse: LEILA untersucht die Sätze im Korpus gram-
matikalisch [122]. Dadurch kann LEILA bedeutungstragende Wortfolgen
viel zuverlässiger identifizieren.

2. Gegenbeispiele: LEILA benutzt Gegenbeispiele, also Informationen, von
denen bekannt ist, dass sie falsch sind. Dadurch kann LEILA irreführende
Wortfolgen leichter entdecken und ausschließen.

3. Maschinelles Lernen: LEILA benutzt statistisches Lernen um sinnvolle
Wortfolgen zu verallgemeinern. Dadurch findet LEILA robuste und ertra-
greiche Wortfolgen.

Eine theoretische Untersuchung beweist, dass irreführende Wortfolgen LEILA
nicht aus der Bahn werfen können. Ihr Einfluss konvergiert gegen Null wenn
die Korpusgröße wächst. Eine ausführliche Evaluation zeigt, dass LEILA Infor-
mationen besser extrahieren kann als andere Ansätze.

SOFIE. Es ist nicht einfach, die Fakten, die LEILA findet, in YAGO zu inte-
grieren. Zum Beispiel muss man darauf achten, dass die neu hinzugewonnenen
Fakten sich nicht mit den alten widersprechen. Diese Aufgaben wird von SOFIE
übernommen. SOFIE ist ein neuartiges Modell zur Informationsintegration,
welches Informationsextraktion als logisches Problem auffasst. In SOFIE wer-
den die Disambiguierung von Wörtern, das Untersuchen von Wortfolgen und das
Beachten semantischer Regeln alle Teil eines vereinheitlichten Modells. SOFIE
vereint drei Prozesse in einem System:

1. Disambiguierung: Wenn ein Wort mehrere Bedeutungen hat, so kann
SOFIE herausfinden, was das Wort in einem bestimmten Zusammen-
hang wohl bedeutet. Anders als existierende Systeme kann SOFIE diese
Entscheidung auch wieder rückgaengig machen, wenn etwas darauf hin-
weist, dass das Wort doch in einer anderen Bedeutung gemeint ist.

2. Untersuchung von Wortfolgen: SOFIE erweitert LEILA und findet
Wortfolgen in Text-Dokumenten. Anders als existierende Systeme kann
SOFIE über die Plausibilität von Wortfolgen nachdenken und vormals
sinnvoll erscheinende Wortfolgen auch wieder verwerfen.

3. Ontologisches Reasoning: SOFIE nutzt das vorhandene Hintergrund-
wissen von YAGO voll aus. SOFIE kann semantische Randbedingungen,
Zusammenhänge zwischen Fakten und Zusammenhänge zwischen altem
und neuem Wissen beachten.

Dieses vereinheitlichte Modell kann als MAX SAT Problem interpretiert werden.
Die vorliegende Arbeit zeigt, wie dieses Poblem effizient und mit einer Approx-
imationsgarantie gelöst werden kann. Eine Evaluation zeigt, dass SOFIE selbst
aus unstrukturierten Internetdokumenten saubere Fakten extrahieren kann –
mit einer Präzision von über 90%.

Die Dissertation schließt mit einem Überblick über die Anwendungen der On-
tologie.
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Chapter 1

Introduction

1.1 Motivation

The Quest For Understanding. Computers were invented half a century
ago. They have become a valuable and sometimes indispensable help in many
areas of our everyday lives. Still, computers could be even more helpful if
they had a certain knowledge about the world. If they understood English,
for example, they could communicate with us in natural language. If they
understood the meaning of words, they could also perform better in automated
text translation. If they understood what we are searching for on the Internet,
they could better help us finding the desired bit of information. In order to be
of use for a computer, the knowledge about the world would have to be encoded
in a machine-readable formalism. Such a formal collection of world knowledge
is called an ontology1 [129].

The Use of Ontologies. Wherever ontologies are already available, they are
heavily used. This applies above all to applications in the vision of the Seman-
tic Web, but also to numerous other application fields: Ontological knowledge
is used for tasks such as machine translation [86, 34, 104], word sense dis-
ambiguation [27, 46, 72], and document classification [74, 15, 127]. It is also
employed for information integration [93, 103, 16], in particular for data clean-
ing and record linkage (entity resolution) [44, 35, 84]. It is used to analyze the
behavior of semantic systems [137] and for tasks such as question answering
[141, 19, 73] and query expansion [88, 66, 139] . In addition, there are emerging
trends towards entity- and fact-oriented Web search and community manage-
ment [12, 29, 33, 38, 51, 81, 89, 97, 100], which can build on rich ontological
knowledge bases.

Challenges. The construction of an ontology is a non-trivial task. Knowledge
has to be explored, gathered and formalized. This alone is a tedious enterprise,
since an ontology usually contains thousands, if not millions of facts. Further-
more, an ontology has to be steadily kept up to date. New knowledge emerges

1In this thesis, we use the term ontology in a very general sense to include also facts about
instances. See Section 1.3.2 for a discussion.
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day by day and has to be combined with the existing knowledge. For these
reasons, ontology construction is still a highly active area of research.

1.2 Contribution

This thesis presents a novel approach for ontology construction. It allows not
only constructing an ontology, but also automatically enlarging it by new knowl-
edge. Our approach consists of three contributions:

1. A core ontology, YAGO.
YAGO is an ontology that has been constructed automatically. It com-
bines high accuracy with large coverage and serves as a core that can be
expanded.

2. A tool for information extraction, LEILA.
LEILA is a system that can extract knowledge from natural language
texts. LEILA will be used to find new facts for YAGO.

3. An integration mechanism, SOFIE.
SOFIE is a system that can reason on the plausibility of new knowl-
edge. SOFIE will assess the facts found by LEILA and integrate them
into YAGO.

Each of these components comes with a fully implemented system. Together,
they form an integrative architecture, which does not only gather new facts,
but also reconcile them with the existing facts. The result is an ever-growing,
yet highly accurate ontological knowledge base. This thesis will show how back-
ground knowledge, information extraction and information integration can work
together seamlessly: The more knowledge is already present, the easier it is to
interpret the new knowledge. For example, once our system has learnt that
Elvis Presley is dead, it knows that all living people who claim to be Elvis must
be epigones.

Outline. The rest of this work is structured as follows: The remainder of this
chapter will introduce the basic concepts of Epistemology and Ontology. The
second chapter will discuss how knowledge can be represented in a computer.
The third, fourth and fifth chapter form the main part of the thesis: They will
introduce the new ontology, the new fact gathering tool, and the integration
mechanism, respectively. Each of these chapters also discusses related work in
detail, often examining the same reference from different points of view. The
sixth chapter will show where our ontology is already employed, and the seventh
chapter concludes this thesis.

1.3 Philosophical Background

This section will set up the philosophical background for our knowledge gather-
ing system. It will present and illustrate the puzzles in the areas of Epistemology
and Ontology. It cannot solve these puzzles, but it will list the assumptions that
are necessary to prepare the ground for semantic computer systems. The section
will also define the notions of knowledge and ontology. It will do so first from a
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psychological and philosophical point of view. Then, it will show in which sense
these notions can be transferred to computer science.

1.3.1 Epistemology

Epistemology. Epistemology is the philosophical study of the nature of knowl-
edge. It is concerned with the concepts of belief and truth. It analyzes what
knowledge can be acquired, how knowledge can be acquired and what it means
to acquire knowledge. The field is immensely complex and brings up numerous
puzzles, traps and pitfalls. To overcome them, we will introduce a number of
simplifying assumptions. These assumptions will allow us to see reality as a set
of true statements for the sake of this thesis.

Knowledge. In general, one distinguishes two types of knowledge: declarative
knowledge and procedural knowledge. Declarative knowledge concerns informa-
tion expressed by statements, such as the information that Paris is in France.
Procedural knowledge concerns abilities to perform certain tasks, such as the
ability to ride a bicycle. There is some evidence that these two types of knowl-
edge work through different psychological processes in the human mind [119].
In this thesis, we will be concerned only with declarative knowledge, i.e., with
knowledge in the form of statements.

Beliefs. A belief is the psychological state in which a person holds a statement
to be true2. There are different theories about the nature of beliefs: Repre-
sentationalism assumes that the statement is stored in some way in the human
mind. This view is challenged by more behavioristic schools of thought, which
argue that a person’s behavior is the only observable variable and hence the
most important key to somebody’s beliefs. Other philosophers question the ex-
istence of beliefs altogether, opining that the notion of belief is nothing more
than a folk-psychological metaphor for a phenomenon that science has not yet
explored3.

Since we are dealing with computer systems in this thesis, we will adapt
a black box view on this matter. For a computer system, we will simply see
belief as a function from statements to truth values. We will say that the
system believes a statement, if the function evaluates to true for that statement.
Adopting Plato’s formulation of knowledge as “true beliefs”, we will say that
the system knows a statement if the system believes it and if that statement is
actually true.

Truth. It is non-trivial to determine whether a statement is true. First of
all, there exist certain statements that cannot have a truth value on principle.
These include self-referring statements such as “This sentence is false” as well
as sentences with invalid presuppositions such as “The Eiffel Tower is in Paris,
the capital of Germany” or statements with void references such as “The King
of France is blond”. In the context of computer science, also undecidable state-
ments such as the assertion that a program terminates fall into this category.

2adapted from [1] on “Belief”
3See [157] on “Belief” for an overview of these schools.
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In this thesis, we will only deal with statements that do have a decidable truth
value in the sense of computer science.

One problem for determining the truth value of a statement is the vagueness
of our terms and notions. In this thesis, we will make the bold assumption that
all terms and properties are crisp and well-defined. In some cases, the definition
of the terms already entails the truth value of the sentence. For example, the
statement “A bachelor is unmarried” is true simply by virtue of the definition
of “bachelor”. These statements are called analytic statements. The remaining
statements are called synthetic. The truth of synthetic statements may be highly
subjective. Different people, different cultures and different religions consider
different things true. Adopting the Correspondence Theory4, we will consider
a statement true if and only if it corresponds to reality. We will not deal with
statements that are exclusively subjective (such as “This book is interesting”).

Unfortunately, the concept of reality is assailable. Reality may well be just a
product of our imagination. We would just “dream” there was a reality and we
would have no way of figuring out that we are dreaming.5 As Descartes famously
noted, the only thing a human mind can be sure of is its own existence. Taking
a pragmatic attitude, I will call “reality” the system in which I perceive myself,
whether it is a product of my imagination or not. In this view, reality is a unique
system of things and states.

Epistemological Problems. Finding out whether a statement corresponds
to reality is difficult. In science, the preferred approach is empirical, i.e., repro-
ducible evidence is used to support a statement and reason is used to deduce
new statements. This approach has a high predictive power and is thus highly
useful, but it is restricted to statements about the physically observable world.
Mental states, for example, typically fall outside this realm.6

Unfortunately, modern quantum physics has taught us that even in the ob-
servable world, the very observation of a state may alter that state. Thus, even
in the observable world, there are areas in which we cannot prove statements by
empirical evidence. Worse, the desire to give a justification for every statement
entails the problem of infinite regress7: Each justification is again a statement
and requires a justification. Thus, ultimately no statement has a circle-free fi-
nite chain of justifications. While well-aware of these problems, we will make
the radical assumption that the truth of a statement can be verified. With this
assumption, our reality is simply a set of true statements.

Understanding. Understanding means grasping the meaning of something
[96]. This thesis will concentrate on the understanding of natural language
texts. In this context, understanding a text will mean reconstructing the state-
ments that the author of the text intended to express. When the text contains
factual information, understanding the text will allow the machine to augment
its knowledge about the world.

4See [157] on “Truth”
5This dream argument can be traced back to Plato and Aristotle. A related idea also

resonates in Plato’s Allegory of the Cave. It appears prominently in the movie “The Matrix”.
6See [157] on “Qualia” for a discussion from a philosophical point of view.
7See [1] on “Regress argument”
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Intelligence. It is unclear whether knowledge about the world actually makes
a machine “intelligent”. Alan Turing proposed to call a computer intelligent
if it can answer questions in such a way that a human cannot distinguish its
answers from the answers given by a human. This so-called Turing Test has been
criticized as anthropomorphic, because, with this definition, a machine could
never be more intelligent than a human8. Common dictionaries [96] provide
a more teleologic definition of intelligence: Intelligence is the ability to solve
problems and to react to previously unknown situations. With this definition,
whether a machine is intelligent or not will ultimately depend on how well it
performs its duties under difficult circumstances.

1.3.2 Ontology

Ontology. While the previous section has established the concepts of truth and
reality, this section will discuss how reality can be structured and described. The
philosophical study concerned with this issue and with existence in general is
called Ontology9. As in the area of Epistemology, there exist numerous puzzles
and pitfalls in the field of Ontology. To overcome these difficulties, we will
introduce a number of assumptions. They will allow us to structure the entities
of this world into individuals, classes and relations.

Self-Reference. The field of Ontology is concerned with existence in general.
This universality immediately entails a number of intrinsic problems. First, the
study of Ontology itself exists. Hence it must be the subject of its own research.
This phenomenon is called the problem of self-reflectivity [17]. Furthermore, the
goal of Ontology is the definition of all concepts and terms. Consequently, the
study of Ontology, unlike any other study, cannot rely on any predefined con-
cepts or notions. In particular, this entails that it cannot define any term with-
out being cyclic.10 To circumvent these philosophical problems, it has become
common in computer science to make a number of implicit simplifying assump-
tions when representing knowledge. I have collected these implicit assumptions
and coined the resulting knowledge representation model the Computational
Model of Ontology [131, 132]. The reader is referred to this work [131] for a de-
tailed description of the model with its philosophical problems and limitations.
Here, we confine ourselves to an overview.

Entities. The basic notion of the Computational Model is the term entity.
Any abstract or concrete thing, whether it exists or not, is an entity. The
Computational Model makes a number of simplifying assumptions on entities:
First, entities are assumed discernible. This view is by no means trivial, since
there exist all kinds of variations, flows and transitions between entities. Drops
of rain, for instance, fall down, join in a puddle and may be splattered by a
passing car to form new drops [128]. Thus, our terminology of discrete entities

8See [1] on “Philosophy of artificial intelligence” for a discussion
9We follow Guarino’s distinction of ”Ontology” (meaning the discipline) and ”ontology”

(meaning a certain conceptualization) [67].
10We discuss this problem in more detail in [49].
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is just an approximation of reality; it is a grid through which we see only distinct
things.

Furthermore, the Computational Model assumes the existence of atomic
entities. In reality, however, entities are often non-atomic: Parts of a device
get replaced by new parts, skin cells renew themselves, and countries can unite
or break up. Notwithstanding these facts, the Computational Model assumes
that entities can only be created and destroyed as wholes. This allows us to
postulate a relation of identity, i.e., we assume that we can tell whether two
entities are the same. The set of all entities that are in the scope of interest is
called the domain.

Values and Words. Artificial identifiers such as numbers, date expressions,
dimensioned quantities or strings are called values. Often (but not always), there
exist infinitely many values of one type. Values are entities as well. Strings
are certain types of values and hence words are also values. We say that a
word refers to an entity, if the word is understood to mean the entity. For
example, the word “Einstein” refers to the physicist Albert Einstein. We say
that Albert Einstein is the meaning of the word “Einstein”. Inversely, the
word “Einstein” is the name of the entity Albert Einstein. It is important to
distinguish between words and their meanings, because words can have different
meanings in different languages. Furthermore, the same entity can have different
names (a phenomenon known as synonymy). Likewise, a word can have different
meanings (a phenomenon known as polysemy). The process of determining
which meaning is intended is called disambiguation.

Relations. The Computational Model assumes entities to have certain prop-
erties. For example, a leaf is green, a person can be blond and 2 is an even
number. Since the definition of entities is so all-embracing, these properties are
also entities. In the Computational Model, properties are seen as unary, binary
and n-ary relations between entities.

Note that this choice does not explain why an entity has a property, what
it means to have a property, or what the nature of properties is. It is just one
arbitrary way of representing the phenomenon of properties. The formalization
through relations is not unique. Although hasColor(leaf, green) would be the
preferred representation [131], nothing prevents one from choosing isGreen(leaf,
yes) or is(leaf, green) instead. A relation name together with an appropriate
number of entities (such as hasColor(leaf, green)) is called a statement. State-
ments are entities as well. A statement that is true is called a fact. The argu-
ments of a fact are called an instance of the relation. For example, leaf /green
is an instance of the relation hasColor. The domain of a binary relation is the
set of all entities that appear in first argument position. Analogously, the range
of a binary relation is the set of all entities that appear in second argument
position. For example, the range of hasColor is the set of colors. If, for a given
first argument of a binary relation, there exists at most one second argument,
the relation is called functional11.

Classes. Entities with similar properties are grouped into sets called classes.
This grouping, called conceptualization, is by no means unique and subject to

11Functional relations are sometimes also called right-unique, right-definite or many-to-one.
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ongoing discussion. The grouping of entities into classes can be motivated by
psychological evidence for the existence of implicit conceptualizations in the
human mind. This evidence, however, is disputed12.

In the Computational Model, classes, as well as properties, are entities.
Classes may or may not be part of the domain. If an entity is an element of a
class, the entity is said to be an instance of the class. If a class is a subset of
another class, the former is called a subclass of the latter. The set of instances
of the subClassOf relation is called a taxonomy. The entities that are neither
relations nor classes nor statements are called individuals13. Figure 1 shows
the terminology. Each node in the graph is a class and the arrows denote the
subclass relationship14.

Entity

Value

Class Relation Individual

String     Number     ...

Statement

Figure 1: Ontological Terminology

ontology. An ontology (with lower case ’o’) is the description of a domain, its
classes and properties by means of a formal language. Some authors call only
the description of classes and relations the ontology, and refer to the individuals
and the relation instances as the knowledge base [91]. Since this distinction is
not salient for the present work, we stick with the more general meaning of
the word ontology.15 An ontology usually employs symbols that represent the
entities. The goal of an ontology is to constrain its symbols in such a way
that a large number of unintended interpretations of the symbols are ruled out
[49]. It is common to call the symbols of the ontology ”classes”, ”entities” and
”relations”, although, strictly speaking, these notions refer to the real-world
objects and not to the symbols. A formal language used for an ontology is
called a knowledge representation model. [116, 129] provide good overviews of
this field.

12See Chapter 10 of [57] for a discussion.
13Sometimes, individuals are called instances. While every individual is an instance, a class

may also be an instance, namely of the class class, see Section 2.1.3.
14Here, the problem of self-reflectivity appears: We are using the concepts of Ontology to

define the concepts of Ontology.
15This is in line with recent blurring of the boundaries in [1, 5].
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Chapter 2

Knowledge Representation

Knowledge representation is an old field in Artificial Intelligence. It has provided
numerous models, from frames and KL-ONE to recent variants of description
logics [116, 129]. Today, RDFS/OWL is the most common knowledge represen-
tation model. It has also been accepted and standardized by the World Wide
Web Consortium1. For our ontology YAGO, we will use a slightly modified
version of this model. This variant is called the YAGO model. The following
sections will first introduce the original RDFS/OWL model and then explain
where and why the YAGO model deviates.

2.1 RDFS/OWL

The basis of RDFS/OWL is a knowledge representation model called Resource
Description Format (RDF)[147]. Hence this section will first introduce RDF
and then show how RDF is extended to the full RDFS/OWL model.

2.1.1 Symbols

RDF uses three types of symbols: URIs, literals and blank nodes.

URIs. A URI (Uniform Resource Identifier) can be seen as a generalized
form of an Internet address. Any Internet address (such as http://google.
com/index.html) is already a valid URI. Internet addresses identify resources
that can actually be downloaded. URIs, in full generality, can also be non-
downloadable. For example, http://google.com/Elvis is also a valid URI,
even if it cannot be accessed on the Internet. Technically speaking, a URI is a
string that follows a certain syntax specification[99]. From an ontological point
of view, URIs are symbols that represent entities.2 Different URIs can represent
the same entity. For example, the following two URIs can both be intended to
refer to the singer Elvis Presley:

http://google.com/Elvis
http://elvis-rulez.com/Elvis

1http://www.w3c.org
2In RDF parlance, a URI identifies a resource, which in turn refers to an entity. In this

thesis, we will restrict ourselves to talking of URIs and entities.

http://google.com/index.html�
http://google.com/index.html�
http://google.com/Elvis�
http://google.com/Elvis�
http://elvis-rulez.com/Elvis�
http://www.w3c.org�
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To simplify URIs, RDF allows defining name spaces. A name space is an ab-
breviation for the prefix of a URI. For example, in this thesis, we will use the
name space y to abbreviate the URI prefix

http://mpii.de/yago/resource/

Then, y:Elvis stands for

http://mpii.de/yago/resource/Elvis

Literals. A literal is a string that represents a value. For example, the string
”5” represents the value five. RDF groups values of the same type into data
types. For example, all integers numbers make up the data type Integer. Tech-
nically speaking, a data type is a mapping from literals to values that specifies
which literal represents which value. In addition to typed literals, RDF also
knows plain literals, which are just strings with a language tag.

Blank nodes. In addition to URIs and literals, RDF also knows blank nodes.
A blank node represents an object whose URI is not known or unimportant.
Wherever a URI can be used, a blank node can be used instead.

2.1.2 Statements

To express that two entities stand in a binary relation, RDF uses a statement.
A statement is a triple of three URIs: a subject, a predicate and an object. The
statement says that the subject and the object stand in the relation given by
the predicate. For example, to state that the entity ElvisPresley stands in the
hasWonPrize relation with the entity GrammyAward, we write the statement

y:ElvisPresley y:hasWonPrize y:GrammyAward

Thus, a statement as used in RDF is simply a statement in the general sense (see
Section 1.3.2), but restricted to binary relations and written with the relation
between the entities. Note that in RDF, the relation, hasWonPrize, is also
represented by a URI. The object of a statement can also be a literal. For
example, to state that Elvis was born in the year 1935, we write:

y:ElvisPresley y:bornInYear 1935

2.1.3 Predefined Symbols

Beyond the data model, RDF also defines certain URIs. By convention, these
use the name space rdf 3. RDF is extended by the Resource Description Frame-
work Schema (RDFS). This extension defines further URIs. These URIs con-
ventionally use the name space rdfs4.

3rdf abbreviates the URI prefix http://www.w3.org/1999/02/22-rdf-syntax-ns#
4rdfs abbreviates the URI prefix http://www.w3.org/2000/01/rdf-schema#

http://mpii.de/yago/resource/�
http://mpii.de/yago/resource/Elvis�


2.1. Knowledge Representation: RDFS/OWL 25

Predefined Classes. In RDFS, classes are represented by URIs – just like
individuals and relations. The main predefined classes are

• rdfs:Resource. This class comprises all entities. Hence resource is a syn-
onym for entity as defined in Section 1.3.2.

• rdfs:Class. This class comprises all classes. Each class (such as y:singer)
will be an instance of rdfs:Class.

• rdf:Property5. This class comprises all binary relations. Thus, for RDFS,
the terms property and binary relation are synonymous. Each relation
(such as y:hasWonPrize) will be an instance of this class.

Predefined Relations. There exist also predefined relation symbols. One of
them is the relation rdf:type, which says that the subject is an instance of the
class given by the object. For example, to state that Elvis is a singer, we write

y:ElvisPresley rdf:type y:singer

The predefined relation rdfs:subClassOf allows us to state that every singer is
a person:

y:singer rdfs:subClassOf y:person

RDFS also defines the relations rdfs:domain and rdfs:range. They allow restrict-
ing the domain and range of a relation, as in the following example:

y:bornOnYear rdfs:domain y:person
y:bornOnYear rdfs:range y:integer

Labels. Entities are referred to by words. Technically speaking, words are
strings and thus they are entities as well. This makes it possible to express that
a certain entity bears a certain name:

ElvisPresley rdfs:label “Elvis”

This allows us to deal with synonymy. The following line says that Elvis Presley
is also known as “Elvis Presley”.

ElvisPresley rdfs:label “Elvis Presley”

Furthermore, we can express polysemy by stating that “Elvis” may also refer
to the English songwriter Elvis Costello:

ElvisCostello rdfs:label “Elvis”

In a similar manner, RDFS defines additional relations such as rdfs:subPropertyOf
and rdfs:comment. It also defines vocabulary for collections such as lists.

5For historical reasons, Property is defined in the name space rdf instead of rdfs.
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2.1.4 Reification

RDF allows reifying statements, i.e., to make them objects of other statements.
Assume for example that we wish to say that Bob believes the statement

y:Elvis y:livesOn y:Moon

To express this constellation in RDF, one needs to create a URI for the
statement, say y:elvisMoonStatement. Next, one describes the statement
y:elvisMoonStatement as follows:

y:elvisMoonStatement rdf:type rdf:Statement
y:elvisMoonStatement rdf:predicate y:livesOn
y:elvisMoonStatement rdf:subject y:Elvis
y:elvisMoonStatement rdf:object y:Moon

By this description, the statement did not become part of the knowledge base.
For the system, Elvis does not live on the Moon. Instead, the statement became
an entity that can now appear in statements:

y:Bob y:believes elvisMoonStatement

2.1.5 Extension to OWL

OWL. RDFS has been extended by additional vocabulary to become the Web
Ontology Language (OWL). URIs defined by OWL conventionally use the name
space owl6. Some new symbols are for example the following:

• owl:sameAs indicates that two URIs refer to the same entities.

• owl:inverseOf says that one relation is the inverse of another.

• owl:disjointWith means that the instances of two classes do not overlap.

• owl:FunctionalProperty is the class of all functional relations.

Restriction Classes. Furthermore, OWL allows restriction classes. A restric-
tion class is a class that is characterized by certain limitations on its instances.
For example, the class of all entities that are born in America is a restriction
class. To state that all American singers are born in America, it suffices to
make the class y:AmericanSinger a subclass of that restriction class. Thereby,
y:AmericanSinger inherits the constraint that all of its instances must be born
in America. Other types of restriction classes allow limiting the number of ob-
jects to which a relation may lead. For example, we can define the class of all
entities that have less than 42 children.

Complexity of OWL. OWL also allows computing the intersection, union
and complement of classes. Given that classes can be also restriction classes,
operations on classes can be quite complex. One of the classical problems in
knowledge representation is to determine whether a class can have instances at
all, given the restrictions imposed on the class. This problem is known as the
satisfiability problem. OWL is so complex that this problem is undecidable in
OWL. This is why the language comes in three flavors:

6owl abbreviates the URI prefix http://www.w3.org/2002/07/owl#
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1. OWL Lite is a subset of OWL that consists of only very few symbols
and forbids certain types of statements. The expressive power of OWL
Lite corresponds to the Description Logics SHIF (D) [71]. Thereby, OWL
Lite is the least expressive flavor, but reasoning in OWL Lite is still in
NEXPTIME [71].

2. OWL DL is a superset of OWL Lite and imposes fewer restrictions.
The expressive power of OWL DL corresponds to the Description Log-
ics SHOIN (D) [71]. This guarantees that the satisfaction problem on
OWL DL is still decidable, although it is in EXPTIME [71].

3. OWL Full is the full set of OWL symbols without any constraints. It is
the most expressive flavor of OWL, but it makes the satisfiability problem
undecidable. OWL Full is the only flavor that allows reification.

2.1.6 Difficulties with the RDFS/OWL model

RDFS/OWL is a very powerful knowledge representation model, which allows
a trading off expressiveness versus computational complexity. Still, it has two
inconveniences for our purpose:

First, a knowledge gathering system will have to store with each fact where
that fact was found. In the RDFS/OWL model, this would require reification.
Reification, in turn, presumes OWL Full and OWL Full is undecidable. This
problem seems to call for an alternative view of reification.

Second, the decidable flavors of OWL do not know the concept of acyclic
transitive relations. This concept, however, is of utmost importance for an
ontology, as all partial orders such as subClassOf, partOf and locatedIn are
acyclic and transitive. This diagnosis seems to call for an extension of the
original semantics.

2.2 The YAGO Model

The YAGO model [135] builds on RDFS. It extends RDFS by putting more
emphasis on reification, by defining a more semantic data type hierarchy and
by adding acyclic transitive relations. Most importantly, it defines a clean,
decidable model-theoretic semantics. This section will first give an informal
description of the YAGO model. It will then proceed with the formal model
and the definition of semantics. Last, it will examine the relation of the YAGO
model to RDFS and define a query language on the YAGO model.

2.2.1 Informal Description

The YAGO model adopts the complete RDFS knowledge representation model.
It adopts most predefined relations. However, its symbols are not URIs, but
simple, local identifiers. The YAGO model adds the class atr, which groups the
acyclic transitive relations. It contains axioms that constrain relations such as
subClassOf to acyclicity:

subclassOf type atr
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Furthermore, the YAGO model equips each fact with a fact identifier. Fact
identifiers are an integral part of the YAGO model. This allows talking about
statements without explicitly reifying them. Take for example the fact

ElvisPresley bornInYear 1935

and suppose it has the fact identifier #1. Then the following line says that this
fact was found in Wikipedia:

#1 foundIn Wikipedia

The YAGO model classifies entities into three groups:

• relations

• fact identifiers. These can be thought of as integer values.

• all other entities, called common entities. These include classes and all
individuals, except for the fact identifiers.

In summary, a YAGO ontology is basically a function that maps fact identifiers
to facts. More formally, a YAGO ontology can be described as a reification
graph.

2.2.2 Reification Graphs

Reification Graphs. We generalize the notion of graphs as follows:

Definition 1: [Reification Graph]
Given a set of nodes N , a set of edge identifiers I and a set of labels L, a
reification graph is an injective total function

GN,I,L : I → (N ∪ I)× L× (N ∪ I).

We call the range of this function the edges of the graph. Intuitively speaking,
the edges of a reification graph can connect not only two nodes, but also a node
and an edge or even two edges. Each edge is unique and has an identifier from
I. Furthermore, each edge has a label from L. Note that a reification graph
of the form GN,I,L : I → N × L×N defines a usual directed multi-graph with
nodes N and labeled edges range(GN,I,L).

YAGO Ontologies. Now, a YAGO ontology can be defined as follows:

Definition 2: [YAGO Ontology ]
A YAGO ontology y over a finite set of common entities C, a finite set of relation
names R and a finite set of fact identifiers I is a reification graph over the set
of nodes I ∪ C ∪ R and the set of labels R, i.e., an injective total function

y : I → (I ∪ C ∪ R)×R× (I ∪ C ∪ R)

Notation. We write down a YAGO ontology (and in general any reification
graph) by listing the elements of the function in the form
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id1: arg11 rel1 arg21

id2: arg12 rel2 arg22

...

To simplify, we will omit the fact identifier if it occurs nowhere else, assum-
ing it to be an arbitrary fresh identifier. Furthermore, we allow the following
shorthand notation

id2 : (arg11 rel1 arg21) rel2 arg22

to mean

id1: arg11 rel1 arg21

id2: id1 rel2 arg22

where id1 is a fresh identifier. Assuming left-associativity, the notation can be
further simplified to

id2 : arg11 rel1 arg21 rel2 arg22

For example, to state that Elvis’ birth date was found in Wikipedia, we can
simply write this fragment of the reification graph as

Elvis bornInYear 1935 foundIn Wikipedia

2.2.3 n-ary Relations

Some facts require more than two arguments (for example the fact that Elvis
got the Grammy Award in 1967). One common way to deal with this issue is
to use n-ary relations (as for example in wonPrizeInYear(Elvis, GrammyAward,
1967)). RDFS and OWL do not allow n-ary relations. Therefore, the standard
way to deal with this problem in these formalisms is to introduce a new binary
relation for each argument (e.g., winner, prize, year). Then, an n-ary fact can
be represented by a new event entity (say, elvisGetsGrammy) that is linked by
these binary relations to all of its arguments:

GrammyAward prize elvisGetsGrammy
Elvis winner elvisGetsGrammy
1921 year elvisGetsGrammy

The YAGO model offers a more natural solution to this problem: It is based
on the assumption that for each n-ary relation, a primary pair of its arguments
can be identified. For example, for the above wonPrizeInYear-relation, the pair
of the person and the prize could be considered a primary pair. The primary
pair can be represented as a binary fact with a fact identifier:

#1 : Elvis hasWonPrize GrammyAward

All other arguments can be represented as relations that hold between the pri-
mary fact and the other arguments:

#2 : #1 inYear 1967
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With our simplified syntax, this can as well be written as

(Elvis hasWonPrize GrammyAward) inYear 1967

or, with the assumption of left-associativity

Elvis hasWonPrize GrammyAward inYear 1967

More formally, the model handles n-ary relations as follows. Let r be an n-ary
relation (e.g. hasWonPrizeInYear). Let a1, ..., an be the names of the arguments
(e.g., winner, prize, year). Given a fact r(x1, ..., xn), the model allows some
of the arguments to be unknown, i.e., xi=null for some i. For example, for
hasWonPrizeInYear, the winner and the prize may be known, but the year
might not, as in hasWonPrizeInYear(Elvis, GrammyAward, null). The model
assumes that (1) at least two arguments are known and (2) that the argument
names a1, ..., an can be ordered in such a way that whenever one argument is
known, all previous arguments are known as well. In the example, the sequence
of arguments would be winner, prize, year. This assumes that the winner and
the prize are always known. Let a1, ..., an be ordered in such a way. Then a fact
r(x1, ..., xi, null,..., null) can be expressed as

f1 : x1 r x2

f2 : f1 a3 x3

f3 : f2 a4 x4

...
fi−1 : fi−2 ai xi

where f1, ...fi−1 are arbitrary different fact identifiers.
This model assumes that the arguments of the relation can be ordered, so

that whenever one argument is known, all previous arguments are known as
well. This is a reasonable assumption for a number of relations, such as has-
WonPrizeInYear (where the year is possibly unknown) or actorPlaysRoleIn-
Movie (where the role might be unknown). In these cases, the model offers a
convenient way to express facts. However, there may also be cases where it is
difficult to order the arguments a priori, for example for a relation that has a
large number of arguments. In these cases, the model can still accommodate
event entities in the spirit of RDFS and OWL.

2.2.4 Data Types

YAGO Data Types. The RDFS/OWL model uses the data types defined by
XML Schema [149]. These data types, however, are more machine-oriented and
not always semantically plausible. For example, XML Schema does not know
the data type rationalNumber, but only the disjoint data types float and double.
This is why the YAGO model comes with its own data types (see Figure 2),
which follow the SUMO ontology [102].
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Literal

Number String TimeInterval Quantity

Rational

Integer

NonNegInteger

Word

URL

Char

TimePoint

Date Year Duration

Length

Weight

Figure 2: The YAGO literal classes

YAGO sees, e.g, integer as a subclass of rational, because each integer number
is a rational number. timeIntervals are specific periods of time, such as the year
2007 or the 8th of January 1935.

Quantities. The class quantity contains values that have a physical dimension
such as length or weight. These values have units, such as meter or kilogram.
In RDFS, quantities are usually represented by blank nodes. This entity is
connected by an rdf:value edge to the numerical value and by a unit edge to the
unit of measurement, for example as follows:

:x rdf:value 1000
:x unit gram

As a consequence, the very same quantity has to be represented as two blank
nodes, if measured with two different units. The YAGO model, in contrast,
can express that the very same quantity has two different values if measured in
different units:

#1: 1000g hasValue 1000
#2: #1 inUnit “gram”
#3: 1000g hasValue 1
#4: #3 inUnit “kilogram”

In YAGO, we use the ISO units and formats both for the hasValue facts and as
quantity identifiers.

2.2.5 Semantics

Prerequisites. This section gives a model-theoretic semantics to YAGO. We
first prescribe that the set of relation names R for any YAGO ontology must
contain at least the relation names type, subClassOf, domain, range and sub-
RelationOf. The set of common entities C must contain at least the classes
entity, class, relation and atr (for acyclic transitive relation). Furthermore, it
must contain classes for all literals as given in Figure 2.

For the rest of this section, we assume a given set of common entities C and
a given set of relations R. The set of fact identifiers used by a YAGO ontology
y is implicitly given by I = domain(y). To define the semantics of a YAGO
ontology, we consider the set of all possible facts F = (I∪C∪R)×R×(I∪C∪R).
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Rewrite System. We define a rewrite system → ⊆ P(F) × P(F), i.e., →
reduces one set of facts to another set of facts. We use the shorthand notation
{f1, ..., fn} ↪→ f to say that

F ∪ {f1, ..., fn} → F ∪ {f1, ..., fn} ∪ {f}
for all F ⊆ F , i.e., if a set of facts contains the facts f1, ..., fn, then the rewrite
rule adds f to this set. Our rewrite system contains the following (axiomatic)
rules:

∅ ↪→ (domain, range, class)
∅ ↪→ (domain, domain, relation)
∅ ↪→ (range, domain, relation)
∅ ↪→ (range, range, class)
∅ ↪→ (subClassOf, type, atr)
∅ ↪→ (subClassOf, domain, class)
∅ ↪→ (subClassOf, range, class)
∅ ↪→ (type, range, class)
∅ ↪→ (subRelationOf, type, atr)
∅ ↪→ (subRelationOf, domain, relation)
∅ ↪→ (subRelationOf, range, relation)

The first rule, for example, says that the range of the relation domain is the
class class, i.e., the second argument of a domain fact will always be a class. In
addition, the rewrite system contains for the literal classes the rules

∅ ↪→ (X, subClassOf, Y )

for each edge X → Y in Figure 2.

Furthermore, it contains the following rules for all r, r1, r2 ∈ R, x, y, c, c1, c2 ∈
I ∪C∪R, r1 6= type, r2 6= subRelationOf, r 6= subRelationOf, r 6= type, c 6= atr,
c2 6= atr:

(1) {(r1, subRelationOf, r2), (x, r1, y)} ↪→ (x, r2, y)
(2) {(r, type, atr), (x, r, y), (y, r, z)} ↪→ (x, r, z)
(3) {(r,domain, c), (x, r, y)} ↪→ (x, type, c)
(4) {(r, range, c), (x, r, y)} ↪→ (y, type, c)
(5) {(x, type, c1), (c1, subClassOf, c2)} ↪→ (x, type, c2)

Properties of the Rewrite System.

Theorem 1: [Convergence of →]
Given a set of facts F ⊂ F , the largest set S with F →∗ S is finite and unique.

The proof of Theorem 1 is given in the Appendix B.1. Given a YAGO ontology
y, the rules of → can be applied to its set of facts, range(y). We call the largest
set that can be produced by applying the rules of → the set of derivable facts
of y, D(y). This allows us to define when two YAGO ontologies are equivalent:
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Definition 3: [Equivalence of YAGO ontologies]
Two YAGO ontologies y1, y2 are equivalent if the fact identifiers in y2 can be
renamed by a bijective substitution so that

(y1 ⊆ y2 ∨ y2 ⊆ y1) ∧ D(y1) = D(y2)

The deductive closure of a YAGO ontology y is computed by adding the derivable
facts to y. Each derivable fact (a, r, b) needs a new fact identifier, which is just
fa,r,b. Using a relational notation for the function y, we can define the deductive
closure more formally as follows:

Definition 4: [Deductive Closure]
The deductive closure of a YAGO ontology y is the YAGO ontology y∗ given
by

y∗ = y ∪ { (fa,r,b, (a, r, b)) |(a, r, b) ∈ D(y) \ range(y) }

Structures. To define the semantics of YAGO, we need the notions of structure
and interpretation.

Definition 5: [Structure]
A structure for a YAGO ontology y is a triple of

• a set U (the universe)

• a function D : I ∪ C ∪ R → U (the denotation)

• a function E : D(R) → U × U (the extension function)

As in RDFS, a YAGO structure needs to define the extensions of the relations
by the extension function E . E maps the denotation of a relation symbol to a
relation on universe elements.

Definition 6: [Interpretation]
An interpretation with respect to a structure < U ,D, E > is the relation Ψ
with

Ψ := {(e1, r, e2) | (D(e1),D(e2)) ∈ E(D(r))}

We say that a fact (e1, r, e2) is true in a structure, if it is contained in the
interpretation. Interpretations that make all facts of the ontology true are
called models:

Definition 7: [Model ]
A model of a YAGO ontology y is a structure such that

1. all facts of y∗ are true in the structure

2. if Ψ(x, type, string) for some x, then D(x) = x

3. if Ψ(r, type, atr) for some r, then there exists no x such that Ψ(x, r, x)
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Consistency. The notion of models allows us to define finally the consistence
of a YAGO ontology:

Definition 8: [Consistency ]
A YAGO ontology y is called consistent if there exists a model for it.

Obviously, a YAGO ontology is consistent iff

6 ∃x, r : (r, type, atr) ∈ D(y) ∧ (x, r, x) ∈ D(y)

Since, by Theorem 1, the deductive closure of a YAGO ontology can be com-
puted by applying the rules (1)-(5) finitely often, we have the following corollary
of Theorem 1:

Corollary 1: [Decidability ]
The consistency of a YAGO ontology is decidable.

Bases. Now we turn to considering ways of minimizing a YAGO ontology.

Definition 9: [Bases]
A base of a YAGO ontology y is any equivalent YAGO ontology b with b ⊆ y.
A canonical base of y is a base so that there exists no other base with less
elements.

Canonical bases have a conventient property in YAGO:

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

The proof of Theorem 2 is given in the Appendix B.2. In fact, the canonical
base of a YAGO ontology can be computed by greedily removing derivable facts
from the ontology in any order. This makes the canonical base a natural choice
to efficiently store a YAGO ontology.

2.2.6 Reification and Semantics

The YAGO model allows making statements about facts. However, it does not
allow curtailing the validity of facts: A model for the ontology must make every
fact true, regardless of whether the fact is an argument of another fact. This has
several consequences. First, it is not possible to state in YAGO that a certain
fact is false. In any case, YAGO does not provide the predefined vocabulary
for such a statement and it would entail immediate undecidability. Second, the
primary pair of an n-ary relation will always be true in a model of the ontology.
Consider, for example, the fact that Elvis was a singer from 1950 to 1977. In
the YAGO model, this fact could be expressed as

#1: Elvis type singer
#2: #1 during 1950-1977
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If the type relation denotes the relation ”x is a y”, then each model will contain
the fact that Elvis is a singer – even though in the intended interpretation
that holds only from 1950 to 1977. Thus, a more adequate denotation for the
type relation would actually be ”x is or was a y”. Another consequence of the
YAGO model is that intentional predicates such as believesThat or saysThat
are not possible, because all arguments to these relations would become true
in the model. It does, however, allow using success verbs such as seesThat or
knowsThat, the arguments of which are true by intention.

These properties of the YAGO model may be considered limiting, but they
guarantee the decidability of the model.

2.2.7 Relation to RDFS/OWL

Vocabulary. The YAGO model is an extension of RDFS. It maintains the
semantics of the RDFS relations domain, range and type. It also maintains
the RDFS relations subClassOf and subRelationOf (subPropertyOf in RDFS).
However, the YAGO model adds acyclicity to these relations. RDFS, in contrast,
does not know the concept of an acyclic relation. This entails that the relation
atr can be defined and used, but that RDFS would not know its semantics.
Another difference to RDFS, discussed in Section 2.2.4, is the use of semantic
data types in YAGO (such as rational numbers). As a small syntactic deviation,
the YAGO model uses the relation symbol means instead of rdfs:label. Thus,
the fact that ElvisPresley is called “Elvis” becomes

“Elvis” means ElvisPresley

Reification. Just as RDFS, the YAGO model uses statements identifiers to
express statements about statements. While RDFS requires explicit reification,
the YAGO model treats fact identifiers as an integral part of the model. On
the semantic level, the difference is that the YAGO model can only talk about
facts that are part of the ontology. In RDFS, arbitrary facts can be used as
arguments, even ones that are false in the model.

Semantics. YAGO uses fact identifiers, but it does not have built-in relations
to make logical assertions about facts (e.g., it does not allow saying that a
fact is false). If one relies on the denotation to map a fact identifier to the
corresponding fact element in the universe, one can consider fact identifiers as
simple individuals. This abandons the syntactic link between a fact identifier
and the fact. In return, it opens up the possibility of mapping a YAGO ontology
to an OWL ontology under certain conditions. OWL has built-in counterparts
for almost all built-in data types, classes, and relations of YAGO . The only
concept that does not have an exact built-in counterpart is atr. However, this is
about to change. OWL is currently being refined to its successor, OWL 1.1[106].
The extended description logic SROIQ [70], which has been adopted as the
logical basis of OWL 1.1, allows expressing irreflexivity and transitivity. This
allows defining acyclic transitivity, even though subClassOf and subPropertyOf
remain reflexive and transitive and hence not acyclic. We plan to investigate
the relation of YAGO and OWL, once OWL 1.1 has been fully established.
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2.2.8 Query Language

To demonstrate the use of YAGO, we present a query language for reification
graphs. The query language can express conjunctive queries in the sense of SQL.
It is similar to SPARQL [148], but it allows querying reified facts, which is not
straightforward in SPARQL.

Queries. Let us start the discussion of our language by defining a query. In
our language, a query is a reification graph:

Definition 10: [Query ]
A query for a reification graph GN,I,R over a set of variables V, V ∩(N∪I∪R) =
∅, is a reification graph over the set of nodes N ∪V , the set of identifiers I ∪V
and the set of labels R ∪ V .

In the following, we denote elements of V by symbols that carry a question mark
(such as ?x). With this convention, a query for the question “When did Elvis
win the Grammy Award?” looks as follows:

?i1: Elvis hasWonPrize GrammyAward
?i2: ?i1 inYear ?x

Our syntax simplifications from Section 2.2.2 can be transferred to patterns:
Each implicit fact identifier becomes a fresh variable. As a result, we could also
formulate our query as

Elvis hasWonPrize GrammyAward inYear ?x

For a query, we also define a result in the ontology:

Definition 11: [Variable Binding, Result ]
A variable binding for a query Q with variables V on a reification graph GN,I,L

is a substitution σ : V → N ∪ I ∪ L, such that σ(Q) ⊂ G. σ(Q) is called a
result of the query.

A variable binding for a query maps the variables to entities so that the query
becomes a subgraph of the ontology. In our example, the variable binding would
map ?x to 1967 and ?i1, ?i2 to some fact identifiers. Thus, a result of this query
could be:

42: Elvis hasWonPrize GrammyAward
43: 42 inYear 1967

This graph is a subgraph of the ontology. In shorthand notation, it becomes

(Elvis hasWonPrize GrammyAward) inYear 1967

or, with left-associativity,

Elvis hasWonPrize GrammyAward inYear 1967

Queries with Virtual Relations. Usually, each entity that appears in the
query also has to appear in the ontology. If that is not the case, there is
no possible variable binding. However, we may want to allow a query such
as “Which singers were born after 1930?”, even if 1930 does not appear in
the ontology. We cannot simply add all existing literals to the YAGO ontology
because a YAGO ontology has to be finite. Hence, we introduce virtual relations
(such as after), which are not part of the result, but are evaluated on the result
as filters:
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Definition 12: [Virtual Relation]
A virtual relation is a decidable function that maps a pair of literals
to either 0 or 1.

This allows us to generalize queries to queries with virtual relations:

Definition 13: [Query with Virtual Relations]
A query for a reification graph GN,I,R over a set of virtual relations Z, a set
of literals L and a set of variables V, V ∩ (N ∪ I ∪ R ∪ L) = ∅, is a reification
graph over the set of nodes N ∪ V ∪ L, the set of identifiers I ∪ V and the set
of labels R ∪ V ∪ Z.

For example, the following is a query over the set of literals {1930} and the set
of virtual relations {after}:

?i1: ?x type singer
?i2: ?x bornInYear ?y
?i3: ?y after 1930

We extend the notion of results to queries with virtual relations as follows:

Definition 14: [Variable Binding, Result with Virtual Relations]
A variable binding for a query Q over the set of virtual relations Z with variables
V on a reification graph GN,I,L is a variable binding σ for the query Q \
{(i, (a1, r, a2))|r ∈ Z}, such that

∀(i, (a1, r, a2)) ∈ Q, r ∈ Z : r(σ(a1), σ(a2)) = 1.

σ(Q) is called a result of the query.

In the example, a variable binding would have to bind ?x and ?y in such a way
that after(?y, 1930) = 1. The variable ?i3 is left unbound. Thus, a result for
this query could be for example

#1: Elvis type singer
#2: Elvis bornInYear 1935
?i3: 1935 after 1930

We will see applications of the query language in Section 3.3.3.

2.3 Summary

This section has discussed different models for knowledge representation. The
most popular model at the time is the RDFS/OWL model. It expresses state-
ments by triples of two entities and one relation. We have seen that this model
brings two inconveniences for our purpose: First, reification is only possible
in the undecidable flavor of OWL. Second, acyclic transitive relations are not
supported in RDFS.

This is where the YAGO model takes over. It extends RDFS by a new
reification mechanism, by new data types and by acyclic transitive relations.
The formal basis of the model are reification graphs. We showed that reifica-
tion graphs allow expressing n-ary relations in an elegant way. We proved that,
despite the expressiveness of the model, its consistency is still decidable. Fur-
thermore, we could show that the model allows computing a unique smallest
base for any given YAGO ontology. Last, we also introduced a query language
that is expressive enough to handle queries over reification graphs.
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Chapter 3

YAGO

The goal of this thesis is to describe a system that can grow knowledge auto-
matically. This system consists of three components: A core ontology, an infor-
mation extraction tool and an integration mechanism. This chapter introduces
the first of the three components, the ontology YAGO1[136, 135]. The chapter
also presents the methodology and techniques used to build YAGO. The first
section introduces the problem and related work. The second section describes
how YAGO is constructed and the third section presents an evaluation.

3.1 Overview

3.1.1 Problem Statement

This chapter discusses the task of creating a general-purpose ontology (see Sec-
tion 1.3.2). Our aim is to construct a knowledge base that contains

1. Individuals. We are interested in all kinds of individuals, including, for ex-
ample, cities, people, organizations, companies, movies, and also abstract
things like historic events or philosophical theories.

2. Classes. Each individual shall be an instance of at least one class. The
classes shall be arranged in a hierarchic taxonomy.

3. Relations. We are interested in different relations, such as bornOnDate,
locatedIn, hasInflation and many others.

4. Facts. Our ontology shall contain facts about the entities. We are inter-
ested in as much factual information as possible.

For example, our ontology shall contain facts of the following form

ElvisPresely type singer
ElvisPresely bornOnDate 1935-01-08
ElvisPresely bornIn Tupelo
Tupelo locatedIn Mississippi(state)
Mississippi(state) locatedIn USA
...

1Yet Another Great Ontology
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In general, we aim for a domain-independent ontology. Our ontology shall not
be restricted to a certain topic, but it shall contain general knowledge about the
world. Furthermore, we would like to minimize human effort in the construction.
That is, we would like the ontology to be constructed automatically. Automatic
gathering of knowledge often brings along a decrease in accuracy. For exam-
ple, automatic techniques for ontology construction often involve information
extraction from natural language text, which may introduce false information.
In our case, however, we aim at an ontology of high accuracy. That means, the
ontology shall contain statements that are actually true with high probability
(see Section 1.3.2).

3.1.2 Related Work

Numerous approaches have been proposed to build a general purpose ontology.

Text-Based Approaches. One class of approaches focuses on extracting
knowledge structures automatically from text corpora. They use information
extraction technologies that include pattern matching, natural-language pars-
ing, and statistical learning [2, 124, 105, 45]. Two important projects along
these lines are KnowItAll [56] and TextRunner [10]. KnowItAll aimed at ex-
tracting instances of a given set of unary or binary relations on a very large
scale. TextRunner has the even more ambitious goal of extracting all instances
of all meaningful relations from Web pages, a paradigm referred to as machine
reading [55]. Recently this approach has been further extended to include even
lifelong learning, by using the already compiled knowledge to drive the strate-
gies for acquiring new facts [11]. Except for [11], all of these systems extract
facts in a non-canonical form. This means that different identifiers are used
for the same entity and there exist no clearly defined relations. A sample fact
(taken from the output of [10]) is

0.0% are under the age of 18

As a result, no explicit (logic-based) knowledge representation model is avail-
able. Furthermore, the quality of text-based systems is still significantly below
that of a hand-crafted knowledge base. If facts have an associated confidence
measure, it is often just a real valued score, which is hard to interpret. Thus,
text-based approaches are still much more suitable for high coverage and less at-
tractive for applications that need consistent ontologies (such as high-accuracy
query processing, or even automated reasoning).

Similar observations hold for the recently popularized direction of min-
ing taxonomies and semantic relations from social-tagging platforms such as
del.icio.us and Web directories such as dmoz.org (see, e.g., [53, 77, 54]).
Notwithstanding the benefits of these approaches, the inherent noise and lack
of explicit quality control for social tagging usually lead to poor precision.

Man-Made Ontologies. Because of the quality bottleneck, the most success-
ful and widely employed ontologies are still man-made. These include WordNet
[59], Cyc or OpenCyc [95], SUMO [102], and especially domain-specific ontolo-
gies and taxonomies such as UMLS2 or the GeneOntology3. These knowledge

2http://umlsinfo.nlm.nih.gov
3http://www.geneontology.org

http://umlsinfo.nlm.nih.gov�
http://www.geneontology.org�
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sources have the advantage of satisfying the highest quality expectations, be-
cause they are manually assembled. However, they are costly to assemble and
continuous human effort is needed to keep them up to date. As a result, no
hand-crafted ontology knows the most recent Windows version or the latest
soccer star.

Community-Based Approaches. Lately, a new approach has entered the
scene: community-based ontology building. Inspired by Wikipedia, the Freebase
project4 aims to construct an ontology by inviting volunteers to contribute facts.
The usefulness of this approach will depend on the acceptance of the project by
the community. Furthermore, effective ways of enforcing uniformity across the
ontology need to be found, as different contributors may prefer different ways of
modeling reality. To facilitate the startup, the Freebase project has incorporated
the YAGO ontology into its knowledge base. The Semantic Wikipedia project
[87] is a comparable initiative. It invites Wikipedia authors to add semantic
tags to their articles in order to turn the page link structure of Wikipedia into
a huge semantic network. Again, the usefulness of this approach will depend on
the acceptance of the project by the community and on finding successful ways
of quality control.

Semi-Structured Approaches. Finally, a recently emerging approach is to
automatically derive explicit facts from the semi-structured part of Wikipedia.
One of the first projects in this direction was DBpedia [8]. DBpedia extracts
facts from the infoboxes of Wikipedia. Infoboxes are standardized tables that
contain basic information about the entity described in the article. For example,
there are infoboxes for countries, which contain the native name of the country,
its capital and its size. In contrast to YAGO, DBpedia does not use defined
relations with ranges and domains. Rather, it uses the words from the infoboxes
as relation names. This way, DBpedia can extract a wealth of facts from the
infoboxes. As a drawback, the same relationship may appear with different
names (e.g. length, length-in-km, length-km). Furthermore, DBpedia has not
been subjected to an evaluation so far. Thus, the consistency and accuracy
of DBpedia are unknown. DBpedia uses YAGO as a taxonomic backbone to
connect the facts to a coherent whole.

Ponzetto et al.[107] use rich heuristics to derive a taxonomy from Wikipedia
categories and links between them. Isolde [145] extracts class candidates from
a specific domain corpus. It exploits Web sources such as Wikipedia and Wik-
tionary to derive additional knowledge about these candidates. Both of these
approaches aim at a taxonomy rather than a full-fledged ontology.

The PORE algorithm [143] combines extraction from Wikipedia infoboxes
with extraction from the natural language part of Wikipedia. Zirn [163] show
how the category names in Wikipedia can be split into classes and individu-
als. Both approaches provide interesting insights into the wealth of information
hidden in Wikipedia, but they do not aim at constructing a full general ontology.

KYLIN [150] starts out with extraction techniques on infoboxes, similar to
those of DBpedia, but then uses powerful learning techniques to automatically
fill in missing values in incomplete infoboxes. The accuracy of the extraction
is remarkable. Its goal, however, is filling infoboxes rather than constructing

4http://www.freebase.com

http://www.freebase.com�
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an ontological knowledge base. At this point, the KYLIN Ontology Generator
(KOG) [151] takes over. Its goal is to use KYLIN to build a comprehensive
knowledge base. KOG uses and refines the taxonomy of YAGO. The result, the
KOG ontology, is not publicly available.

Linking Open Data. There is also a meta-approach to ontology construction:
The Linking Open Data Project [18], launched by the W3C, aims to interlink
existing ontologies. It encourages people to make RDFS data sets available
online as Web services. On top of these Web services, it establishes links be-
tween equivalent concepts in different data sets. DBpedia [8] has pioneered this
area. By being linked to DBpedia, YAGO also becomes part of this knowledge
network.

3.1.3 Contribution

This section presents YAGO [135, 136], an ontology that combines high coverage
with high quality. Its core is extracted automatically from one of the most
comprehensive lexicons available today, Wikipedia. The facts from Wikipedia
are combined with the taxonomic structure of WordNet [59].
The key contributions of YAGO are the following:

1. Information Extraction from Wikipedia. Our approach builds on
the infoboxes and category pages in Wikipedia. As shown in [8], infoboxes
can be exploited to yield huge numbers of facts. Category pages are lists
of articles that belong to a specific category (e.g., Elvis is in the category
of American rock singers). As shown in [85], category pages can be used to
establish type information (e.g. type(Elvis, rockSinger)) and also other
facts (e.g. nationality(Elvis, American)). We present techniques that
harvest the infoboxes and category pages in a more systematic manner,
yielding millions of highly accurate facts.

2. Combination with WordNet. In an ontology, classes have to be ar-
ranged in a taxonomy for useful type information. The Wikipedia cate-
gories are indeed arranged in a hierarchy, but this hierarchy is barely use-
ful for ontological purposes. For example, Elvis is in the super-category
named Grammy Awards, but Elvis is a Grammy Award winner and not
a Grammy Award. WordNet, in contrast, provides a clean and carefully
assembled hierarchy of thousands of classes. But the Wikipedia concepts
have no obvious counterparts in WordNet.

We present techniques that link the two sources with high accuracy. Our
method is the first approach that accomplishes this unification between
WordNet and facts derived from Wikipedia with a precision of 95%. This
allows the YAGO ontology to profit, on one hand, from the vast amount
of individuals known to Wikipedia, while exploiting, on the other hand,
the clean taxonomy of concepts from WordNet.

3. Quality Control. We explain how we can enforce the high accuracy of
our extraction through type checking. Type checking leverages the infor-
mation that has already been extracted to verify the plausibility of newly
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extracted data. We show that type checking can be used both in a reduc-
tive fashion (eliminating facts that are implausible) and in an inductive
fashion (adding supplemental facts that are entailed).

These techniques yield a rich ontology of entities and relations, currently con-
taining more than 2 million entities and more than 19 million facts. An extensive
evaluation study proves that the accuracy of YAGO stands at 95%.

3.1.4 Sources for YAGO

YAGO bases on two sources: WordNet and Wikipedia. This subsection briefly
presents the two resources.

3.1.4.1 WordNet

WordNet is a semantic lexicon for the English language developed at the Cog-
nitive Science Laboratory of Princeton University[59]. WordNet distinguishes
between words and the meanings of the words. A set of words that share one
meaning is called a synset5. Thus, from an ontological point of view, a synset
represents an entity. The elements of a synset are the names of the entity. Words
with multiple meanings (ambiguous words) belong to multiple synsets. As of the
current version 3.0, WordNet contains 82,115 synsets for 117,798 unique nouns.
(Wordnet also includes other types of words such as verbs and adjectives, but
we consider only nouns in this thesis.) WordNet provides relations between
synsets such as subClassOf (called hypernymy in WordNet) and partOf (called
meronymy in WordNet). Conceptually, the hypernymy relation in WordNet
spans a directed acyclic graph (DAG) with a single root node called entity.

3.1.4.2 Wikipedia

Wikipedia is a multilingual, Web-based encyclopedia. It is written collabora-
tively by volunteers and is available for free under the terms of the GNU Free
Documentation License6. As of September 2008, the English Wikipedia con-
tained more than 2 million articles. Each Wikipedia article is a single Web page
and usually describes a single topic or entity. Figure 3 shows the article about
Elvis Presley.

As an online encyclopedia, Wikipedia has several characteristics: First, each
article is highly interlinked to other articles. In the example, a click on the word
singer leads to the Wikipedia article about singers. Each Wikipedia article has
an unstructured, natural language part (on the left hand side in Figure 3). In
addition to that, some Wikipedia articles also have an infobox (pictured on the
right hand side). An infobox is a standardized table with information about the
entity described in the article. For example, there is a standardized infobox for
people, which contains the birth date, the profession, and the nationality. Other
widely used infoboxes exist for cities, music bands, companies etc. In our ex-
ample, the infobox for musical artists is used. Each row in the infobox contains
an attribute and a value. For example, our infobox contains the attribute Birth

5There exist synsets that contain exactly the same words but represent different meanings.
For example, there are two synsets, which each contain only the word “abstraction”, but which
are considered different nevertheless.

6See http://www.gnu.org/copyleft/fdl.html.

http://www.gnu.org/copyleft/fdl.html�
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name with the value Elvis Aaron Presley. An infobox attribute may also have
multiple values, as exemplified by the Occupations attribute. The majority of
Wikipedia articles have been manually assigned to one or multiple categories.
Our sample article is in the categories American rock singers, 1935 births, and
34 more. Figure 3 shows an excerpt at the bottom.

Elvis Presley
From Wikipedia, the free encyclopedia

Elvis Aaron Presley (January 8, 1935 – August 
16, 1977), middle name sometimes written 
Aron) was an American singer, musician and 
actor. A cultural icon, he is commonly referred to 
by his first name, and as the "The King of Rock 
'n' Roll" or "The King". 

etc.

Elvis Presley

Background Information

Birth name:   Elvis Aaron Presley
Born: January 8, 1935
Died: August 16, 1977
Genre(s) Rock and roll

Country rock
Occupations: singer, actor
Website: http://elvis.com

etc.

Categories: 1935 births | 1977 deaths | American 
rock singers | Rock and roll | People with diabetes
etc.

Figure 3: A Wikipedia Article

Wikipedia is rendered as HTML pages, but is written in a special markup
language, the Wiki markup language. Figure 4 shows an excerpt of the article
on Elvis Presley in this language. For our information extraction, we used
the XML dump of Wikipedia as of September 2008. It is approximately 18
Gigabytes large and stores the articles in the Wiki markup language.
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{{Infobox musical artist
| Name = Elvis Presley
| Img = Elvis Presley 1970.jpg
| Birth name = Elvis Aaron Presley
| Born = {{birth date|1935|1|8|}}
| Died = {{Death date|1977|08|16}}
| Genre = [[Rock and roll]], [[Country rock]]
| Occupation = [[singer]], [[actor]]
| URL = [http://elvis.com]
etc.
}}

’’’Elvis Aaron Presley’’’([[January 8]], [[1935]] -- [[August
16]], [[1977]]), middle name sometimes written ’’’Aron’’’,
was an [[United States|American]] [[singer]], [[musician]] and
[[actor]]. He is considered a cultural icon, recognized simply
by his first name. He is also referred to as the ‘‘King of Rock
’n’ Roll’’, or as ‘‘The King’’.
etc.

[[Category:1935 births]]
[[Category:1977 deaths]]
[[Category:American rock singers]]
[[Category:Rock and roll]]
[[Category:People with diabetes]]
etc.

Figure 4: The Wikipedia Markup Language
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3.2 Construction of YAGO

The construction of the YAGO ontology takes place in two stages: First, dif-
ferent information extraction methods are applied to Wikipedia to extract can-
didate entities and candidate facts. This stage also establishes the connection
between Wikipedia and WordNet. Then, quality control techniques are applied.
We will now examine these two steps in detail and afterwards see how YAGO
is stored.

3.2.1 Information Extraction

Since Wikipedia knows far more individuals than WordNet, the individuals for
YAGO are taken from Wikipedia. Each Wikipedia page title is a candidate to
become an individual in YAGO. For example, the page title “Albert Einstein”
is a candidate to become the individual AlbertEinstein in our ontology. The
page titles in Wikipedia are unique. Our algorithm parses the XML dump of
Wikipedia and applies 4 different types of extraction techniques to the articles.

3.2.1.1 Infobox Harvesting

The Attribute Map. A Wikipedia article may contain an infobox (see Figure
3). We harvest the infoboxes by help of an attribute map:

Definition 15: [Attribute Map, Target Relation]
An attribute map is a function that maps infobox attributes to relations. The
relation of an attribute is called the target relation of the attribute. An entry
of the attribute map can be marked as inverse, manifold or indirect.

We will now explain the entries of this map and the markers for the entries.
Each entry of the map maps one infobox attribute (such as Born) to a corre-
sponding YAGO relation (such as bornOnDate). For YAGO, we have identified
170 highly frequent attributes. For each of these attributes, we have manually
designed a target relation with domain and range. One attribute can only map
to one single target relation. However, different attributes may map to the same
relation. For example, both Born and Birthday map to the relation birthDate.
There are cases in which an attribute has to be mapped to the inverse of a rela-
tion. For example, the attribute official name has as its value the official name of
the article entity. But instead of introducing a relation hasOfficialName, which
has the name as its second argument, we would like to map the attribute to the
means relation, which has the name as its first argument. For this purpose, the
entry in the attribute map for official name can be marked as inverse.

Some attributes may have multiple values. For example, a person may have
multiple children. In this case, the entry in the attribute map may be marked as
manifold. Again other attributes do not concern the article entity, but another
fact. For example, the attribute GDPasOf gives the year in which the gross
domestic product (GDP) of a country was computed. In this case, the algorithm
does not generate the fact (country, GDPasOf, year), but rather the fact (id,
during, year), where id is the id of the previously established fact (country,
hasGDP, gdp). Thus, we get the following fact (in shorthand notation):
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country hasGDP gdp during year

Entries for this type of attributes are marked as indirect in the attribute map.
Sometimes, the meaning of the attribute depends on the type of infobox. For
example, the length of a car is an extent in space, whereas the length of a song is
a duration. Hence we allow ambiguous attributes to be qualified by the type of
the infobox (in this example we distinguish car infoboxes and song infoboxes).
Appendix A.1 lists the whole attribute map.

Algorithm. The algorithm for harvesting infoboxes is simple: It parses all
Wikipedia articles. Once it finds an infobox, it walks through all of its attributes.
It looks up each attribute in the attribute map. If an attribute is listed in the
map, the algorithm tries to parse the value of the attribute as an instance of
the range of the target relation. For example, the attribute Birth date has the
target relation birthDate. Its range is timeInterval. Hence the parser tries to
parse the value of the attribute as a time interval (i.e., as a year or a date
expression). We use the parser from [134] to parse literals of different types (see
Section 4.2.1). This parser uses regular expressions to parse numbers, dates and
quantities. It also normalizes units of measurement to ISO units. If the range
of the target relation is not a literal class (but, e.g., the class person), the parser
expects a Wikipedia entity as value and hence tries to find a Wikipedia link. If
the parse fails, the attribute is ignored. Inverse attributes and attributes with
multiple values are handled accordingly. Last, the type of the infobox (e.g. city
infobox or person infobox) produces a candidate fact that establishes the article
entity as an instance of the respective class.

There is one exception: For each country, Wikipedia contains a page on its
economy (e.g. a page with the title ”Economy of the United States”). In these
cases, the parser is configured to attach the extracted facts not to an entity
economy of the United States but rather to the country itself.

3.2.1.2 Type Extraction

Wikipedia Categories. To establish for each individual its class, we exploit
the category system of Wikipedia. There are different types of categories: Some
categories, the conceptual categories, indeed identify a class for the entity of the
page (e.g., Albert Einstein is in the category Naturalized citizens of the United
States). Other categories serve administrative purposes (e.g., Albert Einstein is
also in the category Articles with unsourced statements), others yield relational
information (such as 1879 births) and again others indicate merely thematic
vicinity (such as Physics).

Conceptual Categories. Only the conceptual categories are candidates for
serving as a class for the individual. The administrative and relational categories
are very few (less than a dozen) and can be excluded by hand. To distinguish
the conceptual categories from the thematic ones, we employ a shallow linguistic
parsing of the category name. For example, a category name such as Naturalized
citizens of the United States is broken into a pre-modifier (Naturalized), a head
(citizens) and a post-modifier (of the United States). Heuristically, we found
that if the head of the category name is a plural word, the category is most
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likely a conceptual category. We used the Pling-Stemmer from [134] to identify
and stem plural words (see Section 4.2.1). This gives us a (possibly empty) set
of conceptual categories for each Wikipedia page. Conveniently, articles that do
not describe individuals (such as hub pages) do not have conceptual categories.
Thus, the conceptual categories yield not only the type relation, but also, as its
domain, the set of individuals. It also yields, as its range, a set of classes.

The Wikipedia Category Hierarchy. The Wikipedia categories are orga-
nized in a directed acyclic graph, which yields a hierarchy of categories. This hi-
erarchy, however, reflects merely the thematic structure of the Wikipedia pages.
For example, the category People by occupation is a sub-category of Business.
If categories were interpreted as classes, this would mean that every person
with an occupation is a business – which is absurd. Hence, the hierarchy is of
little use from an ontological point of view. Therefore, we take only the leaf
categories of Wikipedia and ignore all higher categories. Then we use WordNet
to establish the hierarchy of classes, because WordNet offers an ontologically
well-defined taxonomy of synsets.

Integrating WordNet Synsets. Each synset of WordNet becomes a class of
YAGO. Care is taken to exclude the proper nouns known to WordNet, which in
fact would be individuals (Albert Einstein, e.g., is also known to WordNet, but
excluded). There are roughly 15,000 cases, in which an entity is contributed by
both WordNet and Wikipedia (i.e., a WordNet synset contains a common noun
that is the name of a Wikipedia page). In some of these cases, the Wikipedia
page describes an individual that bears a common noun as its name (e.g. Time
exposure is a common noun for WordNet, but an album title for Wikipedia). In
the overwhelming majority of the cases, however, the Wikipedia page is simply
about the common noun (e.g., the Wikipedia page Physicist is about physicists).
To be on the safe side, we always give preference to WordNet and discard the
Wikipedia individual in case of a conflict. This way, we lose information about
individuals that bear a common noun as name, but we ensure that all common
nouns are classes and no entity is duplicated.

Connecting Wikipedia and WordNet. The subClassOf hierarchy of classes
is taken from the hyponymy relation from WordNet: A class is a subclass of
another one, if the first synset is a hyponym of the second. Now, the lower
classes extracted from Wikipedia have to be connected to the higher classes
extracted from WordNet. For example, the Wikipedia class American people in
Japan has to be made a subclass of the WordNet class person. To this end, we
use Algorithm 1.

We first determine the head compound, the pre-modifier and the post-
modifier of the category name (lines 1-3). For the Wikipedia category American
people in Japan, these are “American”, “people” and “in Japan”, respectively.
We stem the head compound of the category name (i.e., people) to its sin-
gular form (i.e., person) in line 4. Then we check whether there is a WordNet
synset for the concatenation of pre-modifier and head compound (i.e., American
person).
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Algorithm 1: wiki2wordnet
Input: Wikipedia category name c
Output:WordNet synset
1 head =headCompound(c)
2 pre =preModifier(c)
3 post =postModifier(c)
4 head =stem(head)
5 IF there is a WordNet synset s for pre + head
6 RETURN s
7 IF there are WordNet synsets s1, ...sn for head
8 (ordered by their frequency for head)
9 RETURN s1

10 FAIL

If this is the case, the Wikipedia class becomes a subclass of the WordNet
class (lines 5-6). If this is not the case, we exploit that the Wikipedia category
names are almost exclusively endocentric compound words (i.e., the category
name is a hyponym of its head compound, e.g., “American person” is a hy-
ponym of “person”). The head compound (“person”) has to be mapped to a
corresponding WordNet synset (s1, ..., sn in line 7). This mapping is non-trivial,
since one word may refer to multiple synsets in WordNet. We experimented
with different disambiguation approaches. Among others, we mapped the co-
occurring categories of a given category to their possible synsets as well and
determined the smallest subgraph of synsets that contained one synset for each
category. These approaches lead to non-satisfactory results.

Finally, we found that the following solution works best: WordNet stores
with each word the frequencies with which it refers to the possible synsets.
We found out that mapping the head compound simply to the most frequent
synset (s1) yields the correct synset in the overwhelming majority of cases.
This way, the Wikipedia class American people in Japan becomes a subclass of
the WordNet class person/human. It would be possible to introduce another
intermediate class, so that American people in Japan becomes a subclass of
American person, which is again a subclass of person/human. Since there are
only very few cases in which a category name has both a pre-modifier and a
post-modifier, we waived this possibility.

Exceptions. There were only around two dozen prominent cases in which the
disambiguation of the Wikipedia category names failed. For example, all cate-
gories with the head compound “capital” in Wikipedia mean the “capital city”,
but the most frequent sense in WordNet is “financial asset”. We corrected these
cases manually. In summary, we obtain a complete hierarchy of classes, where
the upper classes stem from WordNet and the leaves come from Wikipedia.

3.2.1.3 Word Level Techniques

Exploiting WordNet Synsets. WordNet also yields information on the
meaning of words. For example, the word “metropolis” belongs to the synset
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city, implying that one meaning of “metropolis” is city. We leverage this in-
formation in two ways. First, we introduce a class for each synset known to
WordNet (i.e., city). Second, we establish a means relation between each word
of a synset and the corresponding class (i.e., (“metropolis”, means, city)).

Exploiting Wikipedia Redirects. Wikipedia contributes names for the indi-
viduals by its redirect system: a Wikipedia redirect is a virtual Wikipedia page,
which links to a real Wikipedia page. These links serve to redirect users to the
correct Wikipedia article. For example, if the user typed “Einstein, Albert”
instead of “Albert Einstein”, then there is a virtual redirect page for “Einstein,
Albert” that links to “Albert Einstein”. We exploit the redirect pages to give
us alternative names for the entities. Each redirect gives us one means fact (e.g.
(“Einstein, Albert”, means, AlbertEinstein).

Parsing Person Names. The YAGO hierarchy of classes allows us to identify
individuals that are persons. If the words used to refer to these individuals
match the common pattern of a given name and a family name, we extract the
name components and establish the relations givenNameOf and familyNameOf.
For example, we know that AlbertEinstein is a person, so we introduce the facts
(“Einstein”, familyNameOf, AlbertEinstein) and (“Albert”, givenNameOf, Al-
bertEinstein). Both are subrelations of means, so that the family name “Ein-
stein”, for example, also means AlbertEinstein.

3.2.1.4 Category Harvesting

Relational Categories. Relational Wikipedia categories give valuable infor-
mation about the article entity. For example, if a page is in the category Rivers
in Germany, then we know that the article entity is locatedIn Germany. Cat-
egory information is very useful, because not every article has an infobox, but
most articles have categories. We harvest category names by a category map:

Definition 16: [Category Map, Target Relation]
A category map is a function that maps regular expressions on category names
to relations. The relation of a regular expression is called the target relation of
the regular expression.

For example, the category map can map the regular expression “Mountains|Rivers
in (.*)”) to the target relation locatedIn. If a category name matches the reg-
ular expression, a new fact is added, where the first argument is the article
entity, the relation is the target relation and the second argument is the string
captured by the brackets of the regular expression. If, for example, the Rhine
is in the category Rivers in Germany, then we add the fact (Rhine, locatedIn,
Germany). Table 1 shows our category map.

Since all candidate facts will be type checked, we can be generous with our
heuristics. For example, the last two map entries will extract “American Nobel
Prize” and “Nobel Prize”, respectively, from the category name “American No-
bel Prize winners”. Of course, “Nobel Prize” is the correct choice, because the
category says that the prize winner is American, not the prize. At this stage,
however, we keep both candidates and rely on the type check to sort out the
wrong one (see Section 3.2.2.2).
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Table 1: Category Map
Regular Expression Target Relation
([0-9]{3,4}) births bornOnDate
([0-9]{3,4}) deaths diedOnDate
([0-9]{3,4}) establishments establishedOnDate
.* established in ([0-9]{3,4}) establishedOnDate
([0-9]{3,4}) books|novels writtenOnDate
Mountains|Rivers| etc. in (.*) locatedIn
Presidents|Governors of (.*) politicianOf
(.*) winners|laureates hasWonPrize
[A-Za-z]+ (.*) winners hasWonPrize

Language Categories. There are some special categories that indicate the
name of the article entity in other languages. For example, the city of London
is in the special category fr:Londres, meaning that London is called “Londres”
in French. Our algorithm maps the language prefix “fr” to the appropriate
language entity (French) and adds the following candidate fact:

London isCalled “Londres” inLanguage French

3.2.2 Quality Control

Our goal is to deliver an ontology of high quality. For this purpose, we developed
rigorous quality control mechanisms. Canonicalization makes each fact and each
entity reference unique. As a result, an entity is always referred to by the same
identifier in all facts in YAGO. Type Checking eliminates individuals that do
not have a class. It also eliminates facts that do not respect the domain and
range constraints of their relation. As a result, an argument of a fact in YAGO
is always an instance of the class required by the relation. We will now discuss
these steps in detail.

3.2.2.1 Canonicalization

Redirect Resolution. Our infobox algorithm delivers facts that have
Wikipedia entities (i.e., Wikipedia links) as arguments. These links, however,
need not be the correct Wikipedia page identifiers. For example, a reference to
the city of Saint Petersburg may be given as the link St. Petersburg. If one
clicks on that link, Wikipedia’s redirect system will seamlessly forward to the
correct page Saint Petersburg, but for our ontology, these incorrect links have to
be resolved. So, for each argument of each candidate fact, our algorithm checks
whether the argument is an incorrect Wikipedia identifier and replaces it by the
correct, redirected, Wikipedia identifier.

Removal of Duplicate Facts. Sometimes, two extraction algorithms deliver
the same fact. In this case, our canonicalization eliminates one of them. Fur-
thermore, if one fact is more precise than another, then only the more precise
fact is kept. For example, if the category harvesting has determined a birth
date of 1935 and the infobox harvesting has determined 1935-01-08, then only
the fact with 1935-01-08 is kept.
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3.2.2.2 Type Checking

Reductive Type Checking. A candidate fact may contain an entity for which
the extraction algorithm could not determine its class. Since we cannot validate
such a fact, our algorithm discards these facts. The same applies to Wikipedia
entities that have been proposed for an article, but that do not have a page yet.
For the remaining facts, our algorithm knows the class(es) and all super classes
for each entity. If it encounters a fact where the first argument is not in the
domain of the relation, this fact is eliminated (similarly for the second argument
and the range). This type constraint also applies to literals, but the extraction
algorithms already make sure that literals have the correct data type.

Inductive Type Checking. Type constraints cannot only be used to eliminate
facts, but also to generate facts. If, for example, some entity has a birth date,
then one could infer that the entity is a person – rather than eliminating the fact
due to lack of type information. We call this process inductive type checking,
as opposed to reductive type checking. We have made the experience that for
person entities, inductive type checking works very well. So whenever a fact
contains an unknown entity and the range or domain of the relation predicts
that the entity should be a person, the algorithm keeps the fact and makes the
entity an instance of the class person. Reductive type checking is not applied
in these cases. We use a regular expression check to make sure that the entity
name follows the basic pattern of given name and family name.

Type Coherence Checking. In some cases, the classification yields wrong
results. For example, Abraham Lincoln is an instance of 13 classes. 12 of
them are subclasses of the class person (such as lawyer and president). The
13th class is the class cabinet, which has been extracted by mistake. To clean
these erroneous classifications, we use Type Coherence Checking, a technique we
developed in [49]: At the top level, the class hierarchy of YAGO is partitioned
into different branches. These include locations, artifacts, people, other physical
entities, and abstract entities. If a YAGO individual is an instance in multiple
branches, a voting procedure is used to determine the branch that most type
facts lead to (breaking ties arbitrarily). These type statements are kept and all
others are purged. This decreases the number of type statements by roughly
10% . In return, each individual belongs to exactly one branch and potential
errors in the YAGO taxonomy are removed.

3.2.3 Storage and Export Formats

3.2.3.1 Storage Format

Descriptions. Due to its generality, the YAGO ontology can store meta-
relations uniformly together with usual relations. For example, we store for
each individual the URL of the corresponding Wikipedia page. This allows
applications to provide the user with detailed information on the entities. We
introduce the describes relation between the individual and its URL for this
purpose.
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Witnesses. When a new fact was extracted from a particular Web page, we
call this page the witness for the fact. We introduce the foundIn relation, which
holds between a fact and the URL of the witness page. We use the using relation
to identify the technique by which a fact was extracted and the during relation
to give the time of the extraction. The information about witnesses will enable
applications to use, for example, only facts extracted by a certain technique,
facts extracted from a certain source or facts of a certain date.

File Format. The YAGO model itself is independent of a particular data
storage format. To produce minimal overhead, we decided to use simple text
files as an internal format. We maintain a folder for each relation and each folder
contains files that list the entity pairs. With each fact, we store the estimated
accuracy as a value between 0 and 1 (as given by our evaluation, see Section
3.3).

3.2.3.2 Export Formats

We provide conversion programs to convert the ontology to different output
formats.

XML. YAGO is available as a simple XML version. This version of YAGO
mirrors the folder structure of the original files in one huge XML file, together
with a DTD file.

Database. YAGO can be loaded easily into a database. One way to store
YAGO in a database would be to use one table per relation. This could po-
tentially speed up queries in which the relation is known. However, this repre-
sentation would complicate queries in which the relation is unknown. It would
also complicate queries that aim to discover a path between two entities in the
ontology. Hence, our table has the simple schema

FACTS(factId, arg1, relation, arg2, accuracy)

We provide software to load YAGO into an Oracle, Postgres, or MySQL
database.

RDFS. Since the YAGO model is syntactically compatible with RDFS, we
also provide an RDFS version of YAGO. We take care to map the YAGO data
types to RDFS data types wherever possible. Furthermore, we map the is-
Called/inLanguage facts to appropriate plain literals with language tags, as
supported by RDFS. The means relation is mapped to rdfs:label. YAGO makes
heavy use of reification. It uses reification both to store witnesses and to repre-
sent n-ary relations. Fortunately, the XML syntax of RDFS allows a short cut
for this process: If a fact of the ontology is equipped with a triple identifier,
that fact is automatically reified. We define XML entities to further cut down
the verbosity of XML. In the end, the fact

Elvis hasWonPrize GrammyAward inYear 1967

is output as
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<rdf:Description rdf:about="&y;Elvis">
<yago:hasWonPrize rdf:ID="f1" rdf:resource="&y;GrammyAward">

</rdf:Description>
<rdf:Description rdf:about="&y;f1">

<y:inYear rdf:ID="f2" rdf:dataype="&d;decimal">1967</yago:inYear>
</rdf:Description>

Web service. YAGO is also available as a Web service. The Zitgist LLC. com-
pany7 kindly proposed to host the YAGO service on its servers8. This service
is based on the RDFS version of YAGO. It allows Semantic Web applications
to access YAGO online in a machine-readable format.

DBpedia Export. YAGO forms the taxonomic backbone of the DBpedia
ontology [8]. We provide template code for exporting the class hierarchy of
YAGO to DBpedia.

DBpedia Interlinks. The Linking Open Data project [18] encourages peo-
ple to publish existing ontologies as Web services. If two symbols of different
ontologies refer to the same entity, these two symbols shall be interlinked and
marked as equivalent. The DBpedia project [8] has pioneered this area and has
connected the DBpedia ontology to dozens of other ontologies. By providing
links between equivalent symbols in YAGO and DBpedia, YAGO has become
part of this knowledge network. The DBpedia team kindly hosts the equivalence
links as part of their Web service.

3.2.4 Query Engine

Queries. We implemented a simple query engine along the lines of [81] on top
of the database version of YAGO. It can solve queries of the form described
in Section 2.2.8. The engine first normalizes the shorthand notations to the
standard notation, so that each line of the query consists of a fact identifier, a
first argument, a relation and a second argument. Since entities can have several
names in YAGO, we have to deal with ambiguity. Our query engine makes sure
that each word in the query is considered in all of its possible meanings. For this
purpose, we replace each non-literal, non-variable argument in the query by a
fresh variable and add a means fact for it. We call this process word resolution.
Consider, for example, the query “Who was born after Elvis?”:

?i1: Elvis bornOnDate ?e
?i2: ?x bornOnDate ?y
?i3: ?y after ?e

This query becomes

?i0: “Elvis” means ?Elvis
?i1: ?Elvis bornOnDate ?e
?i2: ?x bornOnDate ?y
?i3: ?y after ?e

7http://www.zitgist.com/
8Accessible at http://umbel.zitgist.com/yago.php
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Results. A result of this query shall bind the variables of the original, non-
normalized query (assume them to be ?e, ?x and ?y) and the variables intro-
duced by the word resolution (i.e., in our case ?Elvis). We first discard lines with
filter relations. In our example, the last line is discarded. Then, one single SQL
query is fired. It contains one SELECT argument for each variable that we want
to bind and one join for each line of the query. In the example, the SQL query is

SELECT f0.arg2, f1.arg2, f2.arg1, f2.arg2
FROM facts f0, facts f1, facts f2
WHERE f0.arg1=’"Elvis"’
AND f0.relation=’means’
AND f1.arg1=f0.arg2
AND f1.relation=’bornOnDate’
AND f2.relation=’bornOnDate’

This query delivers values for the variables ?Elvis, ?e, ?x and ?y . Then, the
query engine evaluates the after relation on the pair ?y/?e. If the relation holds,
the binding of the variables is returned as a result.

Implementation. In the deductive closure, an individual is an instance of all
super-classes of its class. Since many queries ask for the class an individual be-
longs to, we pre-computed the deductive closure of the type/subclassOf -axiom,
so that each individual is connected by a type fact to all of its super-classes.
This implementation leaves much room for improvement, especially concerning
efficiency. For example, it takes several seconds to return 10 results to the query
“Who was born after Elvis?”. Queries with more joins can take even longer. In
this thesis, we use the engine only to showcase the contents of YAGO.

3.3 Evaluation and Demonstration

3.3.1 Precision

Evaluation Setup. We were interested in the precision of YAGO. To evaluate
the precision of an ontology, its facts have to be compared to some ground
truth. Since there is no computer-processable ground truth of suitable extent,
we had to rely on manual evaluation. We presented randomly selected facts
of the ontology to human judges and asked them to assess whether the facts
were correct. For each fact, judges could click “correct”, “incorrect” or “don’t
know”.

Since common sense often does not suffice to judge the correctness of YAGO
facts, we also presented them a snippet of the corresponding Wikipedia page.
Thus, our evaluation compared YAGO against the ground truth of Wikipedia
(i.e., it does not deal with the problem of Wikipedia containing some small
fraction of false information). Of course, it would be pointless to evaluate the
portion of YAGO that stems from WordNet, because we can assume human
accuracy here. Likewise, it would be pointless to evaluate the non-heuristic
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relations in YAGO, such as describes or foundIn. This is why we evaluated only
those facts that stem from a heuristic. 13 judges participated in the evaluation
and evaluated a total number of 5200 facts.

Results. We report the precision of the most precise and least precise extraction
techniques in Table 2. To be sure that our findings are significant, we computed
the Wilson interval [23] for α = 5%.9 A confidence interval of 0% means that the
facts produced by the heuristic have been evaluated exhaustively. A complete
list of all heuristics with their precisions can be found in Appendix A.3.

Table 2: Precision of YAGO’s heuristics
Heuristic #Eval Precision

1 hasExpenses 46 100.0 % ± 0.0 %
2 hasInflation 25 100.0 % ± 0.0 %
3 hasLaborForce 43 97.67441% ± 0.0 %
4 during 232 97.48950% ± 1.838 %
5 ConceptualCategory 59 96.94342% ± 3.056 %
6 participatedIn 59 96.94342% ± 3.056 %
7 plays 59 96.94342% ± 3.056 %
8 establishedInYear 57 96.84294% ± 3.157 %
9 createdOn 57 96.84294% ± 3.157 %

10 originatesFrom 57 96.84294% ± 3.157 %
...

72 WordNetLinker 56 95.11911% ± 4.564 %
...

74 InfoboxType 76 95.08927% ± 4.186 %
75 hasSuccessor 53 94.86150% ± 4.804 %

...
88 hasGDPPPP 75 91.22189% ± 5.897 %
89 hasGini 62 91.00750% ± 6.455 %
90 discovered 84 90.98286% ± 5.702 %

Discussion. The evaluation shows very good results. 74 heuristics have a preci-
sion of over 95%. Especially the crucial link between WordNet and Wikipedia,
WordNetLinker, turned out to be very accurate. Also, the use of conceptual
categories (ConceptualCategory) and infobox types (InfoboxType) to establish
the type relation proved very fruitful. establishedInYear is a category heuristic,
the other heuristics shown in the table are infobox heuristics.

Our algorithms cannot always achieve a precision of 100%. One reason for
this is purely statistical: even if all of our assessed sample facts are correct (as
they were indeed for many heuristics), the center of the Wilson interval will be
lower than 100% to account for the uncertainty that is inherent in a confidence
estimation. Some fraction of the assessed facts was extracted incorrectly. For
example, the inductive type checking mistook a racing horse for a person, be-
cause it had a birth date. The WordNetLinker made the Los Angeles Angels of
Anaheim managers a subclass of angel.

Another source of error are inconsistencies of the underlying sources. For
example, for the relation bornOnDate, most false facts stem from erroneous

9Note that the significance depends only on the sample size. It is independent of the total
size of the ontology.
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Wikipedia categories (e.g. some person born in 1802 is in the Wikipedia category
1805 births). For facts with literals (such as hasHeight), many errors stem from
a non-standard format of the numbers (giving, e.g., one movie actor the height
of 1.6km, just because the infobox says 1,632m instead of 1.632m).

Occasionally, the data in Wikipedia was updated between the time of our
extraction and the time of the evaluation. This explains many errors in has-
GDPPPP and hasGini. In addition, the evaluation of an ontology is sometimes
a philosophical issue, because even simple relations suffer from vagueness. For
example, is Lake Victoria locatedIn Tanzania, if Tanzania borders the lake? Is
an economist who works in France a French Economist, even if he was born in
Ireland? These cases of disputability are inherent even to human-made ontolo-
gies. Thus, we can be extremely satisfied with our results. Further note that
these values measure just the potentially weakest point of YAGO, as all other
facts were derived non-heuristically.

Comparison. It is difficult to compare YAGO to other information extraction
approaches, because the approaches usually differ in the choice of relations and
in the choice of the sources. Furthermore, precision can usually be varied at the
cost of recall. Here, we just give an informational overview.

Approaches that use pattern matching (e.g. the Espresso System [105] or
LEILA [133]) typically achieve precision rates of 50% to 92%, depending on the
extracted relation. State-of-the-art taxonomy induction as described in [124]
achieves a precision of 84%. KnowItAll [56] and KnowItNow [28] are reported
to have precision rates of 85% and 80%, respectively. TextRunner [10] is able to
extract a large amount of facts (11.3 million) out of which only an estimated 69%
(7.8 million) are well-formed. Of these well-formed facts, the authors estimate
that 82% are correct. This boils down to an overall accuracy of 57%.

Wu et al. [150] aim at filling in missing values in Wikipedia infoboxes and
achieve a remarkable precision of 73% to 97%. The KOG ontology [151], using
and improving upon the techniques of YAGO, is reported to achieve a preci-
sion of 96%. Ponzetto et al. [107] exploit the Wikipedia category network to
construct a taxonomy and achieve a precision of around 87%. Banko et al. [11]
use different domain search strategies for fact extraction and show a precision
of around 80%.

Confidence Values. We have taken the precision estimates from the evaluation
and attached them as confidence values to the facts. For example, all facts
extracted by the WordNet linking technique have a confidence value of 95.12%.
Many other information extraction approaches provide confidence values as well.
However, in most cases, these are simply real valued scores between 0 and 1,
which are hard to interpret. In YAGO, the confidence values have a precise
meaning: The confidence value of a fact is the estimated probability that the
fact is correct with respect to Wikipedia. This gives the confidence values a
well-defined interpretation.
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3.3.2 Size

Entities. Table 3 shows the number of entities in YAGO. Half of YAGO’s
individuals are people and locations. Other prominent groups are institutions
and movies. The overall number of entities is 2 million.

Table 3: Number of entities in YAGO
Relations 92
Classes 249,015
Individuals (without words and literals) 1,941,578

People 615,924
Locations 303,372
Institutions/companies 30,508
Movies 39,851

Facts. Table 4 shows the number of facts for the most frequent relations in
YAGO. The overall number of ontological facts is 19 million. This number does
not yet include the respective witness facts (foundIn, during and using) and
the trivial facts (inUnit, hasValue and describes). YAGO profits most from the
infoboxes about movies, persons, and geopolitical entities.

Table 4: Largest relations in YAGO
Relation # Facts Relation # Facts
means 5347523 hasSuccessor 55535
type 4505603 hasUTCOffset 52212
inLanguage 3563111 since 47714
isCalled 2185860 hasPopulationDensity 44628
familyNameOf 569410 produced 41747
givenNameOf 568852 hasProductionLanguage 40738
bornOnDate 441274 bornIn 36189
subClassOf 249463 hasImdb 33451
diedOnDate 205469 hasDuration 30791
hasWebsite 130098 actedIn 28836
establishedOnDate 110830 until 26049
isOfGenre 106797 directed 23723
created 95248 hasWonPrize 23076
hasPopulation 77928 writtenInYear 20663
hasArea 62720 hasPredecessor 20515
locatedIn 60261 musicalRole 15516

Appendix A.2 contains a complete list of relations.

Comparison. It is not easy to compare the size of YAGO to other ontologies,
because the ontologies usually differ in their structure, their types of axioms,
their relations, their domain, and their quality. For informational purposes, we
list the current number of entities and facts for some of the most important
other domain-independent ontologies in Table 5, as given on the respective Web
sites. DBpedia is huge, but it includes YAGO.
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Table 5: Size of other ontologies
Ontology # Entities # Facts
SUMO [102] 20,000 70,000
Ponzetto et al. [107] n/a 110,000
WordNet [59] 117,659 821,492
Cyc [95] 300,000 3,000,000
TextRunner [10] n/a 7,800,000
YAGO 1,700,000 15,000,000
DBpedia [8] 1,950,000 116,000,000

3.3.3 Demonstration of Querying Capabilities

Simple Queries. As described in Section 3.2.4, we have implemented a query
engine for accessing the content of YAGO. Table 6 shows two simple queries on
the ontology. The second query makes use of the distinction between words and
other individuals in YAGO.

Table 6: Simple queries on YAGO
Query Result
Who was Einstein’s doctoral advisor? ?x=AlfredKleiner
Einstein hasDoctoralAdvisor ?x
Who is named after a place in Africa? ?who=GabrielSudan
?place locatedIn Africa and 22 more
?name means ?place
?name familyNameOf ?who

Advanced Queries. Table 7 shows three advanced queries. The first query
uses a virtual relation (see Section 2.2.8) to ask for countries having a higher
Human Development Index (HDI) than Canada. YAGO knows 5. The other
queries show how reified facts work.

Table 7: Advanced queries on YAGO
Which countries have a ?other=Sweden
higher HDI than Canada? and 4 others
Canada hasHDI ?HDIcanada
?other hasHDI ?HDIother
?HDIother > ?HDIcanada
When did Angela Merkel become chancellor? ?when=2005-11-22
Angela Merkel type chancellor

since ?when
How is Germany called in Italian? ?how=“Germania”
Germany isCalled ?how

inLanguage Italian

Afterthoughts. It is tempting to assume some kind of “completeness” of
YAGO and to ask, for example, how to say a particular word in Italian, who
governed a particular country at a particular point of time, or who was a partic-
ular person’s doctoral advisor. It should not be forgotten, however, that YAGO
cannot know more than what is available in the infoboxes and categories of
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Wikipedia. Put differently, it is tempting to assume that YAGO contains what
is important. That is wrong. It contains what we could extract from Wikipedia.

3.4 Conclusion

Summary. This section has introduced the ontology YAGO. It forms the
first component of the integrative knowledge gathering system that this the-
sis presents. The knowledge for YAGO has been extracted from Wikipedia.
We showed how the category system and the infoboxes of Wikipedia can be
exploited. We explained how Wikipedia and WordNet can be linked and how
we can enforce high accuracy through type checks. Our evaluation proved not
only that YAGO is one of the largest knowledge bases available today, but also
that it has an unprecedented quality in the league of automatically generated
ontologies.

Discussion. Although the knowledge extraction itself runs fully automated, a
one-time manual effort was necessary to bootstrap the extraction. We identified
and defined attributes and relations for the infoboxes and we established the
patterns for the category heuristics. Furthermore, we manually identified some
exceptions for the heuristics that connects Wikipedia and WordNet. Given the
huge amount of knowledge that we could extract in return and given the high
accuracy of the data that we could achieve, we believe that the manual effort
was justified.

So far, YAGO’s extraction mechanisms are tailored to Wikipedia and Word-
Net. However, our work has created a rich framework of methods that can
possibly be applied to other sources as well. Many other sources, such as the
catalogue of Amazon.com, the Internet Movie Database or the medical resource
UMLS10, use category systems and structures that are similar to infoboxes.
Furthermore, techniques such as inductive and reductive type checking can be
applied in other scenarios, too.

The following chapters will show how YAGO can be further extended in an
automated way.

10http://www.nlm.nih.gov/research/umls/
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Chapter 4

LEILA

The previous section has introduced the ontology YAGO, which forms the first
component of our integrative knowledge gathering system. In order to extend
YAGO, new information has to be added. This is done by the second component,
the information extraction tool LEILA1 [133, 134]. This chapter will first give
an overview of the problem and related work. Then, it will present the model
of LEILA. The last section shows our experiments with the system.

4.1 Overview

4.1.1 Problem Statement

This chapter discusses the task of information extraction (IE). This is the task
of finding structured information in text documents. Here, we will concentrate
on finding facts in the documents (in the sense of Section 1.3.2). For example,
a text document might contain the following sentence

“Johannes Brahms was a German composer born in Hamburg.”

Then, the goal of a fact extraction system is to extract the following facts

JohannesBrahms type composer
JohannesBrahms hasNationality German
JohannesBrahms bornIn Hamburg

This task is non-trivial for a computer, because it requires the understanding
of the document (see Section 1.3.1). More precisely, it requires the mapping of
pieces of text to relations and facts. Information extraction can be pursued on
different types of documents. Among them are structured documents (such as
tables), semi-structured documents (such as Wikipedia, see Section 3.1.4.2) or
unstructured natural language documents (such as news stories). Since a large
part of content-bearing texts are unstructured in this sense, we aim at a system
that can work on unstructured documents here. Furthermore, we aim at a
system that works without human interaction. That is, our goal is to construct
a system that, given a set of text documents, runs autonomously and extracts
a set of facts. We will assume that the system is given a single target relation

1Learning to Extract Information by Linguistic Analysis
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(e.g., bornInYear). Then, the task is to find instances of the target relation in
the documents (e.g., FredericChopin/1810).

4.1.2 Related Work

Numerous projects have pursued ways of extracting information from text doc-
uments. The approaches differ in various features and can hardly be classified
strictly. The reader is invited to see [118] for a comprehensive survey of ap-
proaches. This section gives only a coarse categorization of existing approaches
along several dimensions.

Type of Task. Some systems are designed to discover new relations ([90, 144]).
In our setting, however, there is a given target relation (such as bornInYear).
Some systems ([37, 160]) perform relation classification. For a given pair of
entities, these systems try to choose the relation of which the pair is an instance.
These systems may assume that the pair is indeed an instance of one relation
out of a pool of given relations. In our setting, however, there may be pairs of
entities that do not belong to any relation.

Type of the Relation. The extracted relation can be either unary or binary.
In the unary case, the relations are just sets of entities (e.g. all cities in a given
text, [60, 30]). The GATE project [45] offers (among other things) tools for
recognizing certain types of entities, such as people or locations. The LIBRA
project [161, 100] aims to identify canonic entities of a certain type in Web
documents. In our setting, however, we focus on binary relations. Some systems
aim at learning a single relation, mostly the type-relation ([43, 24, 64, 138, 41,
123, 42, 124, 115]). In this thesis, we are interested in extracting arbitrary
relations. This includes not only the type-relation, but also other relations such
as the birthdate-relation or the headquarters-relation between a company and
the city of its headquarters.

Human interaction. There are systems that require human input for the IE
process ([113, 92, 4, 91, 32]). The GATE project [45] also provides (among other
things) a visual tool for human-oriented information extraction. Our work aims
at a completely automated system.

Type of corpora. There exist systems that can extract information efficiently
from formatted data, such as HTML-tables or structured text ([65, 61, 162]).
As discussed in Section 3.1.2, there also exist very successful approaches that
are tailored to specific corpora such as Wikipedia ([8, 107, 145]). However,
since a large part of the Web consists of natural language text, we consider
in this chapter only systems that accept also unstructured corpora. Further-
more, there exist approaches that concentrate on a specific domain, such as the
biomedical domain ([109]) or the business domain ([117]). Here we aim at a
domain-independent approach.

Initialization. As initial input, some systems require a hand-tagged corpus
([75, 126]), i.e., a corpus in which the relevant entities and relations have been
marked manually. Other systems require text patterns ([155]) or templates
([153]), i.e., phrases that indicate an instance of the target relation. Again other
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systems require seed tuples ([2, 20]), i.e., a set of instances of the target relation.
Shen et al. [120] have proposed a combination of manually designed procedural
predicates and logical reasoning to extract information (see Section 5.1.2). Since
hand-labeled data, manually assembled text patterns and procedural predicates
require huge human effort, we consider only systems that use seed tuples. Again
other systems require the set of all individuals to be known a priori, which we
may not assume here ([20], see Section 5.1.2).

Scope. Furthermore, we differentiate between limited scope systems that are
bound to a corpus and free scope systems that use the Web as a corpus. Free
scope systems are for example KnowItAll [56], TextRunner [10] (see Section
3.1.2) and Alice [11] (see Section 5.1.2). The DBLife project [52] pursues a
slightly different goal, but still falls within the domain of free scope systems.
We observe that in both types of systems, the techniques used to extract the
entities from the documents are essential. These techniques will be the main
focus of this chapter. To study the techniques in a controlled environment, we
restrict ourselves to limited scope systems for this section.

Techniques. There are many different techniques for extracting entities from
documents. One school concentrates on detecting the boundary of interesting
entities in the text ([30, 60, 155]). Other approaches make use of the context
in which an entity appears ([42, 25, 41]). This school is mostly focused on the
type-relation. Another group of systems is the group of pattern-oriented systems
([56, 2, 111, 22, 125, 154, 11, 105, 143]). This classification is by no means
complete or crisp; there exist numerous hybrid methods, which, for example,
perform text segmentation but can be used for relation extraction. These include
statistical methods that use Hidden Markov Models (HMMs) or Conditional
Random Fields (CRFs) (see again [118] for a more comprehensive survey).

Here, we provide a more detailed survey of pattern-oriented systems, because
they are explicitly targeted at extracting facts with arbitrary relations.

Pattern-Oriented Systems. Pattern-oriented systems are given a target re-
lation (e.g. bornInLocation) and a set of instances of the target relation (the
seed pairs). They find patterns in the text that appear with a seed pair (e.g. the
pattern “X was born in Y” might appear with a seed pair of the target relation
bornInLocation). Then they seek other occurrences of that pattern and thereby
find new instances of the target relation.

There are numerous techniques to extract patterns from text documents.
Some approaches use raw surface patterns, i.e., they represent patterns as se-
quences of characters. Other systems use regular expressions as patterns, which
allows them to generalize on patterns. Surprisingly, most existing systems do
not use deep linguistic analysis of the corpus. Consequently, they are extremely
volatile to small variations in the patterns – even if the variation does not have
any semantic effect. For example, the simple subordinate clause in the following
example (taken from [111]) can already prevent a surface pattern matcher from
discovering the relation between “London” and the “river Thames”:

“London, which has one of the busiest airports in the world, lies on the
banks of the river Thames.”
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Furthermore, surface approaches cannot benefit from advanced linguistic tech-
niques such as anaphora resolution. Anaphora resolution is the process of deter-
mining which entity is meant by a pronoun (such as “he” or “she”). The only
approach that does use deep linguistic analysis [26] considers only the short-
est path in the dependency graph as a feature. Thus, this system cannot deal
with the difference between “A dog is a mammal” (which expresses the sub-
ClassOf -relation) and “This dog is a nag” (which does not). Most importantly,
all pattern matching approaches can be mislead by false positive patterns, i.e.,
patterns that appear with a seed pair, but that are not indicative of the target
relation. However, the exact influence of false positive patterns has rarely been
analyzed.

4.1.3 Contribution

This section presents LEILA [133, 134], a pattern-oriented system with novel
techniques for fact extraction from text documents. Given a binary target rela-
tion (such as bornInLocation), LEILA will extract new instances of the relation
from a text corpus. LEILA brings three key contributions:

1. Linguistic Analysis: LEILA uses a link-grammar representation [122]
for natural-language sentences. This allows LEILA to detect robust nat-
ural language patterns. Furthermore, it allows for advanced techniques
such as anaphora resolution.

2. Counterexamples: LEILA takes into account counterexamples, i.e.,
pairs of entities that are known to be not in the target relation. This
allows LEILA to identify and discard false positive patterns. Discarding
these patterns improves LEILA’s precision.

3. Machine Learning: LEILA uses statistical learning (namely SVMs and
kNN classifiers) to generalize the useful patterns. This process gives
LEILA high yield and robust patterns, increasing its recall and precision.

As discussed in the previous section, there are existing works that also use lin-
guistic analysis [26, 123]. There are also numerous previous works that use
machine learning techniques ([123] among others). However, none of the pre-
vious works uses machine learning and linguistic analysis to extract arbitrary
relations. Furthermore, none of the previous approaches uses counterexamples
in addition to the seed pairs.

All of LEILA’s techniques are carefully integrated into a full-fledged system
architecture. Our evaluation shows that LEILA outperforms state-of-the-art
techniques for information extraction. Our theoretical analysis shows that false
positive patterns cannot disrupt the performance of LEILA.

4.1.4 Linguistic Analysis

Linguistic Structures. LEILA sees sentences not as sequences of words, but as
deep linguistic structures. The process of constructing a deep linguistic structure
for a sentence is called parsing. There exist different approaches for parsing.
They range from simple part-of-speech tagging to context-free grammars and
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more advanced techniques such as Lexical Functional Grammars, Head-Driven
Phrase Structure Grammars or stochastic approaches. In principle, LEILA can
work with any type of linguistic structures.

Link Parser. For purely pragmatic reasons, we chose the structures produced
by the Link Grammar Parser [122]. This parser is based on a context-free gram-
mar and it is simpler to handle than the advanced parsing techniques. At the
same time, it provides a much deeper semantic structure than the standard
context-free parsers. Following our implementation choice, this subsection de-
fines the notions of linguistic structure and pattern with respect to the Link
Grammar Parser, even though any other parser could be used.

Linkages. Figure 5 shows a linguistic structure produced by the Link Parser.
We call these structures linkages.

Chopin was.v     great  among the composers.n of   his  time.n

subj compl mod

prepObj

mod

prepObj

detdet

Figure 5: A simple linkage

Technically speaking, a linkage is a connected planar undirected graph, the
nodes of which are the words of the sentence. The edges (the links) are labeled
with connectors. For example, the connector subj marks the link between the
subject and the verb of the sentence. The linkage must fulfill certain linguistic
constraints. These are given by a link grammar, which specifies which word may
be linked by which connector to preceding and following words. The parser also
determines the part-of-speech (POS) for the words. The POS of a word can
be noun, verb, adjective, adverb or preposition. In Figure 5, the suffix “.n”
identifies “composers” as a noun.

Patterns. We define patterns based on linkages:

Definition 17: [Pattern]
A pattern is a linkage in which two words have been replaced by placeholders.

Figure 6 shows a sample pattern with the placeholders “X” and “Y”.

    X     was.v clearly mediocre  among the          Y

subj

compl

mod
prepObj

detmod

Figure 6: A simple pattern

We call the (unique) shortest path from one placeholder to the other the bridge,
marked in bold in Figure 6. A pattern matches a linkage if the bridge of the
pattern appears in the linkage, although nouns and adjectives are allowed to
differ. For example, the pattern in Figure 6 matches the linkage in Figure 5,
because the bridge of the pattern occurs in the linkage, apart from a substitution
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of “great” by “mediocre”. If a pattern matches a linkage, we say that the
pattern produces the pair of words that the linkage contains in the position of
the placeholders. In our example, the pair “Chopin” / “composers” is produced.

Semantics. We say that a pattern expresses a relation r, if the underlying
sentence implies that a pair of entities is an instance of r. Note that the deep
linguistic analysis of the sentence would allow us to define the meaning of the
sentence in a theoretically well-founded way [98]. For this thesis, however, we
limit ourselves to an intuitive understanding of the notion of meaning. We make
another simplifying assumption: Strictly speaking, patterns produce pairs of
words, not pairs of entities. The words have to be mapped to entities in order
to check whether the pair is an instance of a relation. In tune with all other
pattern matching approaches, we will ignore this problem for this section. We
will assume that there is an many-to-one mapping between words and entities.
Thus, we will say that the pair produced by a pattern is an element of the target
relation even though the pair of entities is meant. Section 5 will deal with the
problem of mapping words to entities.

4.2 System Model

4.2.1 Preprocessing

LEILA will find patterns and relation instances in a corpus. To facilitate this
task, we preprocess the corpus.

Character Normalization. Different sources come with different encodings
for special characters (such as umlauts). Some sources use ampersand codes
(such as “&auml;”), others use percentage codes (such as “%A3”), again others
use backslash codes (such as “\u00A3”) and again others use UTF-8. We have
developed a parser that decodes these types of codes to Unicode characters.2

Some characters are non-ASCII Unicode characters and hence hard to digest
for the Link Parser. Hence, our parser can also normalize the characters. Nor-
malization maps a Unicode character to an ASCII character (or to a sequence
thereof). Of course, our normalization cannot cover all Unicode characters, but
our experience shows that Unicode characters not covered by our normalization
hardly appear.

Sentence Detection. Our preprocessor eliminates formatting elements from
the corpus. This includes HTML tags in HTML files and blank lines and re-
peated spaces in text files. The result of this process is corpus of pure text.
Then, the preprocessor splits the corpus into sentences. It uses simple heuris-
tics (such as occurrences of punctuation) for this purpose. Some parts of the
corpus are ungrammatical. These parts are lists of items, expressions that use
parentheses and other constructions that cannot be handled by the Link Parser.
Our preprocessor cuts them out. Consider, for example, the sentence “Chopin
and Mozart (and others) were composers”. The preprocessor cuts out “(and
others)”. This leaves the proper sentence “Chopin and Mozart were composers”

2All tools mentioned here are available as Java Tools at http://mpii.de/~suchanek/

downloads/javatools.

http://mpii.de/~suchanek/downloads/javatools�
http://mpii.de/~suchanek/downloads/javatools�
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and produces the non-grammatical “sentence” “Chopin and Mozart (and oth-
ers)”. The non-grammatical sentence is given a pseudo-linguistic parsing by the
preprocessor, which just links adjacent words by an artificial connector.

Date and Number Normalization. Many relations concern values such as
dates and numbers. These values appear in various forms in natural language
texts. For example, the following strings are valid expressions of “100 meters”:

100 meters, 100 m, one hundred meters, a hundred meters, 0.1 km, 1000
decimeters, 0.062 miles, 328 feet, 328’

A similar variety exists for dates. For example, the following strings are valid
expressions for “December 19th, 2008”:

2008-12-19, 12/19/2008, 19.12.2008, December 19th 2008, 19th of De-
cember 2008, 19-Dec-2008

We have developed a parser that normalizes all of these expressions. After the
normalization, all dates are in ISO 6008 format (i.e., of the form “2008-12-19”).
Partial date expressions (such as “May 2008”) are encoded with placeholders
(“2008-05-##”). Analogously, all number expressions take the form of digits
plus an optional unit identifier (“100m”). Non-SI units (such as gallons, stones,
Fahrenheit and acre-feet) are converted to SI units.

Stemming. To facilitate the detection of seed pairs, words have to be in
their singular form. Stemming plural words to singular words is a non-trivial
enterprise. Some words form their singular by cutting off an ’s’, whereas others
cut off ’es’ (consider, e.g., “boxes”/“box”, but “nurses”/“nurse”). Some words
have a foreign origin and hence form their singular completely differently (such
as “automata”/“automaton”). Some words have a completely irregular form
(“mice”/“mouse”). Other words do not change at all (such as “atlas”, which
can be both singular and plural). Again others look like a plural word, but are
not (“aerobics”). Worse, some words can be both plural and singular (such as
“mechanics” as the discipline or the plural of “mechanic”). By collecting these
exceptions systematically from WordNet [59], we were able to develop a stemmer
(the PlingStemmer) that can handle most cases in the English language.

4.2.2 Algorithm

Target Relation. As input, LEILA requires the target relation, i.e., the re-
lation for which the system shall find instances. As a definition of the target
relation, LEILA expects a function that decides into which of the following
categories a pair of words falls:

• Example: The pair is an instance of the target relation.

• Counterexample: The pair is not an instance of the target relation.

• Candidate: The pair could be an instance of the target relation.

• None of the above.
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Corpus. Furthermore, LEILA requires a preprocessed corpus as input. The
sentences in the corpus are parsed, producing a deep linguistic structure for
each of them. In principle, our algorithm does not depend on a specific parsing
technique. In our implementation, we use the Link Grammar Parser. The next
step is an optional anaphora resolution, i.e., the replacement of pronouns by
their references. We use a conservative approach, which simply replaces a third
person pronoun by the subject of the preceding sentence.

Algorithm. Summing up, we are given as input

1. A target relation in the form of a function, as described above.

2. A preprocessed and parsed corpus.

As output, we aim to produce a set of instances of the target relation (see
Section 1.3.2). LEILA’s core algorithm proceeds in three phases:

1. In the Discovery Phase, it seeks sentences and corresponding linkages in
which an example pair appears. It replaces the two words by placehold-
ers, thus producing a pattern. These patterns are collected as positive
patterns. Then, the algorithm runs through the sentences again and finds
all linkages that match a positive pattern, but produce a counterexample.
The corresponding patterns are collected as negative patterns3.

2. In the Training Phase, statistical learning is applied on the positive and
negative patterns. The result of this process is a classifier for patterns.

3. In the Testing Phase, the algorithm considers again all sentences in the
corpus. For each linkage, it generates all possible patterns by replacing
two words by placeholders. If the two words form a candidate and the
pattern is classified as positive, the produced pair is proposed as a new
element of the target relation (an output pair).

This way, the system generates new instances of the target relation from the
corpus.

Example. Suppose our target relation is bornInYear, i.e., we are interested in
people and their birth dates. For LEILA, we have to characterize this relation
by a function. This function has to decide whether a pair of words is an example,
a counterexample or a candidate. For bornInYear, this function could make use
of a set of known pairs of people with their birth dates (the seed pairs). For
example, the seed pairs could contain the pair Chopin/1810. Then, the function
categorizes a pair of words x/y as follows:

• The pair is an example, if it appears in the seed pairs. In our case, the
pair with x =Chopin and y =1810 is an example.

3While counterexamples are pairs of entities that do not stand in the target relation,
negative patterns are pieces of text that do not express the target relation. Note that different
patterns can match the same linkage.
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• The pair is a counterexample, if x is a person appearing in the seed
pairs and y is a wrong birth date. For example, the pairs Chopin/1811,
Chopin/1812, and Chopin/2000 would all be categorized as counterexam-
ples, because we know that Chopin was born in 1810.

• A pair is a candidate, if x is a proper name, y is a year and the pair is
neither an example nor a counterexample. For example, assuming that our
seed pairs know nothing about Mozart, the following pairs are candidates:
Mozart/1950, Mozart/1870, Mozart/1756

• In all other cases, the pair is classified as none.

Our algorithm requires a parsed corpus as input. For the sake of simplicity, we
will represent the corpus and the patterns as plain sentences for our example
(see Section 4.1.4 for the exact form of patterns). The algorithm proceeds as
follows:

1. In the Discovery Phase, it seeks sentences and corresponding linkages in
which an example pair appears. For example, assume that the corpus
contains the following sentence

“Chopin was born in 1810.”

Since the pair Chopin/1810 is classified as an example pair by our function,
the algorithm generates the following pattern

“X was born in Y .”

Now suppose we find the following sentence

“Chopin has composed more than 1810 pieces of music.”

In this sentence, the example pair Chopin/1810 appears as well. Hence,
we also record the following pattern as a positive pattern:

“X has composed more than Y pieces of music.”

If this last pattern also occurs with counterexamples, the algorithm will
register the pattern both as a positive pattern and as a negative pattern.

2. In the Training Phase, statistical learning is applied on the positive and
negative patterns. The result of this process is a classifier for patterns. In
our case, the pattern

“X was born in Y .”

will be classified as positive. The pattern

“X has composed more than Y pieces of music.”

will hopefully have appeared with many counterexamples, so that it is
classified as negative. We discuss in Section 4.2.3 what happens if this
pattern is erroneously classified as positive.
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3. In the Testing Phase, the algorithm considers again all sentences in the
corpus. For example, assume that we find the sentence

“Mozart was born in 1756.”

Since the pair Mozart/1756 is categorized by our target relation function
as a candidate, we examine the following pattern:

“X was born in Y .”

Since this pattern is classified as positive by our pattern classifier, the
algorithm produces the pair Mozart/1756 as an output pair.

Finally, the output of the algorithm is a set instances of the target relation
bornInYear. Although usually the Discovery Phase and the Testing Phase are
run on the same corpus, it is also possible to run them on two distinct corpora.

4.2.3 Robustness

4.2.3.1 The Problem of False Samples

False Samples. The central task of the Discovery Phase is determining pat-
terns that express the target relation. Since the linguistic meaning of the pat-
terns is not apparent to the system, it relies on the following hypothesis: When-
ever an example pair appears in a sentence, the linkage expresses the target
relation. This hypothesis may fail if a sentence contains an example pair merely
by chance, i.e., without expressing the target relation. For example, assume
that we are again considering the bornInYear relation. Assume that the pair
Chopin/1810 is a seed pair. Then, the following sentence would trigger the
extraction of a positive pattern in the Discovery Phase:

“Chopin has composed more than 1810 pieces of music.”

Clearly, this sentence does not express our target relation bornInYear. Still,
the pattern would be used as a positive sample for the generalization process.
Analogously, a pattern that does express the target relation may occasionally
produce counterexamples. For example, the pattern “X was born in Y ” does
express our target relation bornInYear, but still it produces a counterexample
if applied to the following sentence:

“Chopin was born in 1811 or 1810.”

In this case, the pattern is used as a negative sample in the generalization
process, even though it does express the target relation. We call these patterns
false samples. The problem of false samples is intrinsic for pattern matching
approaches in general. We will now see why false samples do not question the
validity of our approach.

False Samples in Machine Learning. Virtually any learning algorithm can
deal with a limited number of false samples. For Support Vector Machines
(SVM), the effect of false samples has been analyzed thoroughly in [39]. In
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general, an SVM is highly tolerant to noise. There are also detailed theoretical
studies [7] on how the proportion of false samples influences a PAC-learner. In
essence, the number of required samples increases, but the classification is still
learnable.

It is also possible to understand the concept of positive patterns as a proba-
bilistic concept [83]. In this setting, the pattern is not classified as either positive
or negative, but it may produce pairs of the target relation with a certain fixed
probability. The task of the learner is to learn the function from the pattern to
its probability. [121] shows that probabilistic concepts can be learned and gives
bounds on the number of required samples.

The following subsection analyzes the problem of false samples in more detail
for a special class of classifiers, the k-Nearest-Neighbor-classifiers.

4.2.3.2 False Samples with k-Nearest-Neighbor Classifiers

kNN Classifiers. A k-Nearest-Neighbors (kNN) classifier takes as input a set
of training patterns that are labeled positive or negative. In our case, this set is
provided incrementally during the Discovery Phase. In addition to the training
patterns, the kNN classifier also requires a distance function on patterns. In
the Testing Phase, the classifier can be asked to classify a (previously unknown)
test pattern as positive or negative. It does this by considering the distance of
the test pattern to the training patterns.

Adaptive kNN Classifiers. We consider a simple variant of an adaptive kNN
classifier: During the Discovery Phase, a newly added positive pattern becomes
a prototype for a whole class of new patterns. Whenever another positive pattern
is discovered, we check whether its distance to an existing prototype is below
some threshold θ. We say that the pattern falls on the prototype4. If the new
pattern does not fall on an existing prototype, it becomes a prototype on its
own. The actual Training Phase is particularly simple for the kNN Classifier:
We label a prototype as positive if the majority of the patterns that fell on it
were positive, as negative else. In the Testing Phase, we find for a test pattern
its closest prototype. If there is no prototype within the distance θ, the pattern
is classified as negative. If it falls on a prototype p, the pattern is classified as
positive if p has a positive label and as negative else.

Probabilistic Model. We are interested in the probability that a test pattern
is classified as positive, although the produced pair is not in the target relation.
In the Testing Phase, each possible pattern is generated for each sentence in
the corpus (this will be a number of patterns quadratic in the number of nouns
in the sentence). We model the sequence of all these patterns as a sequence of
N random events. Each pattern produces a pair of words with its underlying
sentence. This pair can either be an example, a counterexample or a candi-
date5. We model these events by Bernoulli random variables EX, CE,CAND,

4If θ is chosen sufficiently small, all patterns falling on p share their essential linguistic
properties. Hence we assume that they all have the same probability of producing examples
or counterexamples.

5For simplification, we assume that the 4th class of word pairs mentioned in Section 4.2.2
does not appear. If it does, it will only improve the bound given here.
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captured by a multinomial distribution: EX = 1 iff the pair is an example,
CE = 1 iff the pair is a counterexample, CAND = 1 − EX − CE = 1 iff the
pair is a candidate. For each prototype p, we introduce a Bernoulli random
variable Fp, such that Fp = 1 with probability fp iff a generated pattern falls
on p. Note that this model also applies to the Discovery Phase.

Training Phase. We first concentrate on the Training Phase. We are interested
in the probability that a given prototype p gets a positive label, although it
does not express the target relation. We define the quality of p as the relative
probability of patterns falling on p to produce examples:

qp =
P (EX|Fp)

P (EX|Fp) + P (CE|Fp)

Since p does not express6 the target relation, qp < 1
2 . The allotment of p is the

share of examples and counterexamples produced by patterns falling on p:

ap = P (EX|Fp) + P (CE|Fp)

The better the examples and counterexamples are chosen, the more likely it
is that patterns falling on p produce examples or counterexamples (instead of
candidates) and the larger ap will be. Let #EXp stand for the number of
examples and #CEp for the number of counterexamples produced by patterns
falling on p in the Discovery Phase. We are interested in the probability of p
getting a positive label, namely P (#EXp > #CEp), given that qp < 1

2 . In
Appendix B.3 we prove the following theorem:

Theorem 3: [Probability of False Labeling ]
With the above definitions, the probability that a prototype p receives a positive
label in the training phase of the adaptive kNN classifier is bounded as follows:

P (#EXp > #CEp) ≤ 2e−
1
2 Na2

pf2
p + 2e(2−apfpN)·( 1

2−qp)2

Testing Phase. Now we turn to the Testing Phase. We are interested in the
probability that an incorrect output pair is produced by a pattern falling on p.
For this to happen, a test pattern must fall on p, it must produce a candidate
and p must be wrongly labeled as positive. Combined, this yields

P (CAND ∩ Fp) · P (#EXp > #CEp)

= P (CAND|Fp) · P (Fp) · P (#EXp > #CEp)

= (1− ap) · fp · P (#EXp > #CEp)

≤ 2(1− ap) · fp · (e− 1
2 Na2

pf2
p + e(2−apfpN)·( 1

2−qp)2)

This estimation shows that a larger allotment ap (i.e., a good choice of examples
and counterexamples) decreases the probability of wrongly classifying a candi-
date pair. Furthermore, the estimation mirrors the intuition that either many

6Note that if qp > 1
2
, the pattern does express the target relation and there is no danger that

it could produce false output pairs. Here, we concentrate on patterns that do not express the
target relation, but are erroneously assumed to express the target relation by the algorithm.
Hence, the interesting case is qp < 1

2
.
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patterns fall on p in the Discovery Phase (fp large) and then p is unlikely to
have a false label, or few patterns fall on p (fp small) and then the probability
of p classifying a test pattern is small. As the number of sentences (and hence
the number of generated patterns N) increases, the bound converges to zero.
This observation entails the following corollary of Theorem 3:

Corollary 2: [Probability of False Output Pairs]
If an adaptive kNN classifier is used, the probability that LEILA produces an
output pair that is not in the target relation converges to zero as the number
of patterns increases.

This insight provides the theoretical justification for our approach.

4.2.4 Classifying Patterns

This subsection discusses how patterns can be represented and generalized using
machine learning. We will first identify the important features of patterns.
Then, we will show how the kNN classifier and the SVM classifier can work on
these features.

4.2.4.1 Feature Model

Feature Vectors. Most machine learners require that the patterns are repre-
sented as a set of features. A feature is a certain characteristics of the pattern.
For example, one feature could be the number of words in the pattern. It would
not be too difficult to somehow encode the full patterns into features. However,
such an approach would not generalize well, for it would capture all details of
the specific sentences that led to the patterns and thus tend to cause overfitting.
So the problem that we tackle is to identify the characteristic but generalized
features within linkages.

Bridges and Contexts. The most important component of a pattern is its
bridge. In the Discovery Phase, we collect the bridges of the patterns in a
list. Each bridge is given an identification number, the bridge id. Two bridges
are given the same bridge id if they differ only in their nouns or adjectives (as
discussed in section 4.1.4). The context of a word in a linkage is the set of all
its links together with their direction in the sentence (left or right) and their
target words. For example, consider again the linkage given in Figure 7.

Chopin was.v     great  among the composers.n of   his  time.n

subj compl mod

prepObj

mod

prepObj

detdet

Figure 7: A simple linkage

The context of “composers” in this linkage is the following set of triples

(det, left, “the”)
(prepObj, left, “among”)
(mod,right, “of”)
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Word Types. Each word is assigned a set of types. We distinguish nouns,
adjectives, prepositions, verbs, numbers, dates, names, person names, company
names and abbreviations. The parser already assigns the grammatical types
by its part-of-speech tagging. We assign the other types by regular expression
matching. For example, any word matching “[A-Z][a-z]+ Inc” is given the type
company. To accommodate the role of stopwords in understanding a sentence,
we make each stopword a type of its own.

Features of a Pattern. We represent a pattern by the following set of fea-
tures: The bridge id, the context of the first placeholder and the context of the
second placeholder. For example, supposing that the bridge id of the pattern in
Figure 7 is 42, we represent the pattern as

bridge id: 42
first context: {(subj,right,“was”)}
second context: {(det, left, “the”),

(prepObj, left, “among”),
(mod, right, “of”)}

Each pattern is reduced to its features before it is given to the machine learning
algorithm. Furthermore, each pattern found in the Discovery Phase is equipped
with a label (+1 for positive patterns and −1 for negative patterns). To show
that our approach does not depend on a specific learning algorithm, we imple-
mented two machine learning algorithms: The adaptive kNN classifier discussed
in 4.2.3.2 and an SVM classifier. Since the kNN classifier requires a distance
function, whereas the SVM classifier requires a vector representation of patterns,
both classifiers use slightly different inputs.

4.2.4.2 Feature Model for the kNN Classifier

Similarity Functions. For the adaptive kNN, we need a similarity function
on patterns. Let τ(w) be the set of types of a word w. The similarity of two
words is the overlap of their type sets:

sim(w1, w2) =
|τ(w1) ∩ τ(w2)|
|τ(w1) ∪ τ(w2)|

The similarity of two contexts C1, C2 is computed by comparing each triple in
C1 to all triples in C2, where each triple contains a connector, a direction and
a word:

sim(C1, C2) =

∑

(coni,diri,wi)∈Ci,i=1,2

α1([con1 = con2]) + α2([dir1 = dir2]) + α3sim(w1, w2)
|C1| · |C2|

Here, [·] denotes the Iverson bracket, which evaluates to 1 if the enclosed con-
dition is true and to 0 else. α1, α2, α3 are weighting factors that sum up to 1.
We chose α1 = 0.4, α2 = 0.2, α3 = 0.4. Two patterns have a similarity of zero
if they have different bridge ids. Else, their similarity is the averaged similarity
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of the contexts of the first and second placeholder, respectively:

sim((b1, C11, C12, l1), (b2, C21, C22, l2)) =
1
2 [b1 = b2](sim(C11, C21) + sim(C12, C22))

Training and Testing. Let cP be the set of patterns that fell on a prototype
P during the Discovery Phase. We compute the label of P as the sum of the
labels of the patterns in cP , weighted with their respective similarities to P :

label(P ) =
∑

p ∈ cP

label(p) · sim(P, p)
|cP |

To classify a pattern p in the Testing Phase, we first determine its prototype P .
If there is no prototype within the distance θ, the pattern receives the label −∞.
Else, we calculate its label as the product of the similarity to the prototype and
the label of the prototype.

label(p) = label(P ) · sim(P, p)

If the label is greater than zero, p is classified as positive. Else, p is considered
negative.

4.2.4.3 Feature Model for the SVM Classifier

Feature Vectors. To generalize patterns by an SVM, the patterns have to be
translated to real-valued feature vectors. For this purpose, we first group the
patterns by their bridge ids. Each group will be treated separately so that it is
not necessary to store the bridge id in the feature vector. If n is the number
of connector symbols, then a feature vector for a pattern can be depicted as
follows:

context 1︷ ︸︸ ︷
X . . .X︸ ︷︷ ︸

connector1

. . . X . . .X︸ ︷︷ ︸
connectorn

context 2︷ ︸︸ ︷
X . . . X︸ ︷︷ ︸

connector1

. . . X . . .X︸ ︷︷ ︸
connectorn

The vector consists of two parts, which store the context of the first and second
placeholder, respectively. For example, consider again the representation of the
sample pattern introduced in the previous section:

bridge id: 42
first context: {(subj,right,“was”)}
second context: {(det, left, “the”),

(prepObj, left, “among”),
(mod, right, “of”)}

The first context of this representation will be stored in the first part of the
feature vector. The second context will be stored in the second part of the
feature vector. Let us examine how a context can be stored in the vector: In
the vector, each context area contains a sub-part for each possible connector
symbol. For example, there will be one sub-part for subj, one sub-part for obj
and so on. Each of these subparts contains one bit (denoted by X in the above
scheme) for each possible word type. So, in each sub-part, there will be one
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bit for the type noun, one bit for the type verb etc. Hence, if there are t word
types, the overall length of the vector is 1 + n · t + n · t. We encode a context
as follows in the vector: If there is a link with connector con that points to a
word w, we first select the sub-part that corresponds to the connector symbol
con. Within this sub-part, we set all bits to 1 that correspond to a type that
w has. For example, assuming that there were only 4 word types and assuming
that verb is the first type, the first context of our sample pattern is encoded as

context 1︷ ︸︸ ︷
0, 0, 0, 0︸ ︷︷ ︸

connector1

. . . 1, 0, 0, 0︸ ︷︷ ︸
subj

. . . 0, 0, 0, 0︸ ︷︷ ︸
connectorn

Training Phase. During the Discovery Phase, the system produces feature
vectors for positive and negative patterns. These vectors are always grouped
according to the bridges. After the Discovery Phase, we pass each group sep-
arately to an SVM. We used SVMLight [79] with its default parameters. The
SVM produces a model for each group, i.e., basically a function from patterns to
real values (negative values for negative patterns and positive values for positive
ones).

Testing Phase. To classify a new pattern in the Testing Phase, we first identify
its bridge group. If the pattern does not belong to a known group, we give it the
label −∞. Else, we translate the pattern to a feature vector and then apply the
model of its group. Note that both the kNN classifier and the SVM classifier
output a real value that can be interpreted as the confidence of the classification.
Thus, it is possible to rank the output pairs by their confidence.

4.3 Experiments

4.3.1 Setup

Corpora. We ran LEILA on different corpora with increasing heterogeneity:

• Wikicomposers: The set of all Wikipedia articles about composers (872
HTML documents). We use it to see how LEILA performs on a document
collection with a strong structural and thematic homogeneity.

• Wikigeography: The set of all Wikipedia pages about the geography of
countries (313 HTML documents).

• Wikigeneral: A set of random Wikipedia articles (78141 HTML docu-
ments). We chose it to assess LEILA’s performance on structurally ho-
mogenous, but thematically random documents.

• Googlecomposers: This set contains one document for each baroque,
classical, and romantic composer in Wikipedia’s list of composers, as de-
livered by a Google ”I’m feeling lucky” search for the composer’s name
(492 HTML documents). We use it to see how LEILA performs on a
corpus with a high structural heterogeneity. Since the querying was done
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automatically, the downloaded pages include spurious advertisements as
well as pages with no proper sentences at all.

Target Relations. We tested LEILA on different target relations with increas-
ing complexity:

• birthdate: This relation holds between a person and his birth date (e.g.
“Chopin” / “1810”). It is easy to learn, because it is bound to strong
surface clues (the first element is always a name, the second is always a
date).

• synonymy: This relation holds between two names that refer to the same
entity (e.g. “UN”/“United Nations”). The relation is more sophisticated,
since there are no surface clues.

• type This relation is even more sophisticated, because the sentences often
express it only implicitly.

Competitors. We compared LEILA to different competitors. We only con-
sidered competitors that, like LEILA, extract the information from a corpus
without using other Internet sources. We wanted to avoid running the competi-
tors on our own corpora or on our own target relations, because we could not
be sure to achieve a fair tuning of the competitors. Hence we ran LEILA on
the corpora and the target relations that our competitors have been tested on
by their authors. We compare the results of LEILA with the results reported
by the authors. Our competitors, together with their respective corpora and
relations, are:

• TextToOnto:7 A state-of-the-art representative for non-deep pattern
matching. The system provides a component for the type relation and
takes arbitrary HTML documents as input. For completeness, we also
consider its successor Text2Onto [42], although it contains only default
methods in its current state of development.

• Snowball [2]: A recent representative of the slot-extraction paradigm. In
the original paper, Snowball has been tested on the headquarters relation.
This relation holds between a company and the city of its headquarters.
Snowball was run on a collection of some thousand documents. For the
evaluation, the authors extracted the ground truth manually from a subset
of this corpus. For copyright reasons, we only had access to this sub-
corpus. It consists of 150 text documents.

• [43] present a new system that uses context to assign a concept to an
entity. We will refer to this system as the CV-system. The approach
is restricted to the type-relation, but it can classify instances even if the
corpus does not contain explicit definitions. In the original paper, the
system was tested on a collection of 1880 files from the Lonely Planet
Internet site8.

7http://www.sourceforge.net/projects/texttoonto
8http://www.lonelyplanet.com/
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Metrics. For the evaluation, the output pairs of the system have to be com-
pared to a table of ideal pairs. One option would be to take the ideal pairs
from a pre-compiled data base. The problem is that these ideal pairs may differ
from the facts expressed in the documents. Furthermore, these ideal pairs do
not allow to measure how much of the document content the system actually
extracted.

This is why we chose to extract the ideal pairs manually from the documents.
In our methodology, the ideal pairs comprise all pairs that a human would
understand to be elements of the target relation. This involves full anaphora
resolution, the solving of reference ambiguities, and the choice of truly defining
concepts. For example, we accept Chopin as instance of composer but not as
instance of member, even if the text says that he was a member of some club.
Of course, we expect neither the competitors nor LEILA to achieve the results
in the ideal table. However, this methodology is the only fair way of manual
extraction, as it is guaranteed to be system-independent. If O denotes the
multi-set of the output pairs and I denotes the multi-set of the ideal pairs, then
precision, recall, and their harmonic mean F1 can be computed as

recall =
|O ∩ I|
|I| precision =

|O ∩ I|
|O|

F1 =
2× recall × precision

recall + precision

Additional Metrics. To ensure a fair comparison of LEILA to Snowball, we
use the same evaluation as employed in the original Snowball paper [2], the
Ideal Metric. The Ideal Metric assumes the target relation to be functional.
Hence the set of ideal pairs is right-unique. The set of output pairs can be
made right-unique by selecting the pair with the highest confidence for each
first component. Duplicates are removed from the ideal pairs and also from
the output pairs. All output pairs that have a first component that is not in
the ideal set are removed. There is one special case for the CV-system, which
uses the Ideal Metric for the non-right-unique type relation. To allow for a fair
comparison, we used the Relaxed Ideal Metric, which does not make the ideal
pairs right-unique. The calculation of recall is relaxed as follows:

recall =
|O ∩ I|

|{x|∃y : (x, y) ∈ I}|
By taking over the metrics from our competitors, we ensure that the competitors
are evaluated under optimal conditions.

Significance. Due to the effort, we could extract the ideal pairs only for a sub-
corpus. To ensure significance in spite of this, we compute confidence intervals
for our estimates: We interpret the sequence of output pairs as a repetition of
a Bernoulli-experiment, where the output pair can be either correct (i.e., con-
tained in the ideal pairs) or not. The parameter of this Bernoulli-distribution is
the precision. We estimate the precision by drawing a sample (i.e., by extract-
ing all ideal pairs in the sub-corpus). By assuming that the output pairs are
identically independently distributed, we can calculate a confidence interval for
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our estimation. We compute confidence intervals for precision and recall for a
confidence level of α = 95%. We measure precision at different levels of recall
and report the values for the best F1 value.

We used approximate string matching techniques to account for different
writings of the same entity. For example, we count the output pair “Chopin”
/ “composer” as correct, even if the ideal pairs contain “Frederic Chopin” /
“composer”. To ensure that LEILA does not just reproduce the example pairs,
we list the percentage of examples among the output pairs. During our evalua-
tion, we found that the Link Grammar parser does not finish parsing on roughly
1% of the files for unknown reasons.

4.3.2 Results

4.3.2.1 Results on different relations

Table 8 summarizes our experimental results with LEILA on different relations.
All confidence intervals for precision and recall are below ±10% (see [133] for
the values).

Table 8: Results with different relations
Corpus Rel. #D #O #C #I Precision Recall F1 %E
Wikicomposers birthd. 87 95 70 101 73.68% 69.31% 71.43% 4.29%
Wikicomposers birthd. 87 90 70 101 78.89% 70.30% 74.35% 4.23%
Wikigeography syn. 81 92 74 164 80.43% 45.12% 57.81% 5.41%
Wikigeography syn. 81 143 105 164 73.43% 64.02% 68.40% 4.76%
Wikicomposers type 87 685 408 1127 59.56% 36.20% 45.03% 6.62%
Wikicomposers type 87 790 463 1127 58.61% 41.08% 48.30% 7.34%
Wikigeneral type 287 921 304 912 33.01% 33.33% 33.17% 3.62%
Googlecomposers type 100 787 210 1334 26.68% 15.74% 19.80% 4.76%
Googlecomposers type 100 840 237 1334 28.21% 17.77% 21.80% 8.44%
Googlec.+Wikic. type 100 563 203 1334 36.06% 15.22% 21.40% 5.42%
Googlec.+Wikic. type 100 826 246 1334 29.78% 18.44% 22.78% 7.72%

#D – number of documents in the hand-processed sub-corpus

#O – number of output pairs

#C – number of correct output pairs

#I – number of ideal pairs

%E – proportion of example pairs among the correct output pairs

Birthdate. For the birthdate relation, we used Edward Morykwas’ list of
famous birthdays9 as examples. As counterexamples, we chose all pairs of a
person that was in the examples and an incorrect birthdate. All pairs of a
proper name and a date are candidates. We ran LEILA on the Wikicomposer
corpus. LEILA performed quite well on this task. The patterns found were of
the form “X was born in Y” and “X (Y)”. The quality of the results decreases as
the system starts to consider any number in brackets a birthdate. For example,
at the lower end of the confidence scale, the system also reports operas with the
date of their first performance.

Synonymy. For the synonymy relation we used all pairs of proper names that
share the same synset in WordNet as examples (e.g. “UN”/“United Nations”).
As counterexamples, we chose all pairs of nouns that are not synonymous in

9http://www.famousbirthdays.com
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WordNet (e.g. “rabbit”/“composer”). All pairs of proper names are candidates.
We ran LEILA on the Wikigeography corpus, because this set is particularly rich
in synonyms. LEILA performed reasonably well. The patterns found include
“X was known as Y” as well as several non-grammatical constructions such as
“X (formerly Y)”.

Type. For the type relation, it is difficult to select example pairs, because if
an entity belongs to a concept, it also belongs to all super-concepts. However,
admitting each pair of an entity and one of its super-concepts as an example
would result in far too many false positives. The problem is to determine for each
entity the (super-)concept that is most likely to be used in a natural language
definition of that entity. Psychological evidence [114] suggests that humans
prefer a certain layer of concepts in the taxonomy to classify entities. The
set of these concepts is called the Basic Level. Heuristically, we found that
the lowest super-concept in WordNet that is not a compound word is a good
approximation of the basic level concept for a given entity. We used all pairs
of a proper name and the corresponding basic level concept of WordNet as
examples. We could not use pairs of proper names and incorrect super-concepts
as counterexamples, because our corpus Wikipedia knows more meanings of
proper names than WordNet. Therefore, we used all pairs of a common noun
and an incorrect super-concept from WordNet as counterexamples. All pairs of
a proper name and a WordNet concept are candidates.

The Type Relation on Different Corpora. We ran LEILA on the Wiki-
composers corpus. The performance on this task was acceptable, but not im-
pressive. However, the chances to obtain a high recall and a high precision were
significantly decreased by our tough evaluation policy: The ideal pairs include
tuples deduced by resolving syntactic and semantic ambiguities and anaphoras.
Furthermore, our evaluation policy demands that non-defining words such as
member not be chosen as instance concepts. In fact, a high proportion of the
incorrect assignments were friend, member, successor and predecessor, decreas-
ing the precision of LEILA. Thus, compared to the gold standard of humans, the
performance of LEILA can be considered reasonably good. The patterns found
include the Hearst patterns [68] “Y such as X”, but also more complex patterns
such as “X was known as a Y”, “X [. . . ] as Y”, “X [. . . ] can be regarded as
Y” and “X is unusual among Y”. Some of these patterns could not have been
found by primitive regular expression matching.

To test whether thematic heterogeneity influences LEILA, we ran it on the
Wikigeneral corpus. Finally, to try the limits of our system, we ran it on the
Googlecomposers corpus. As shown in Table 8, the performance of LEILA
dropped in these increasingly challenging tasks, but LEILA could still produce
useful results. We can improve the results on the Googlecomposers corpus by
adding the Wikicomposers corpus for training.

The different learning methods (kNN and SVM) performed similarly for all
relations. Of course, in each of the cases, it is possible to achieve a higher
precision at the price of a lower recall. The runtime of the system splits into
parsing (≈ 40s for each document, e.g., 3:45h for Wikigeography) and the core
algorithm (2-15min for each corpus, 5h for the huge Wikigeneral).
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4.3.2.2 Results with different competitors

TextToOnto. We compared LEILA to TextToOnto and Text2Onto for the
type relation on the Wikicomposers corpus. TextToOnto requires an ontology
as source of possible concepts. We gave it the WordNet ontology, so that it
had the same preconditions as LEILA. Text2Onto does not require any input.
Table 9 shows the results of the comparison. Text2Onto seems to have a pre-
cision comparable to ours, although the small number of found pairs does not
allow a significant conclusion. Both systems have drastically lower recall than
LEILA– even though both systems are tailored to and hence restricted to the
type relation.

Table 9: Results on Wikicomposers with the Type Relation
System #D #O #C #I Precision Recall F1
LEILA(SVM) 87 685 408 1127 59.56% 36.20% 45.03%
LEILA(kNN) 87 790 463 1127 58.61% 41.08% 48.30%
Text2Onto 87 36 18 1127 50.00% 1.60% 3.10%
TextToOnto 87 121 47 1127 38.84% 4.17% 7.53%

Abbreviations as in Table 8

Again, all confidence intervals for precision and recall were below ±10% (see
[133] for the values).

Snowball. We compared LEILA and Snowball on the original Snowball corpus
with the headquarters relation. Unfortunately, we only had access to the test
corpus. Hence we trained LEILA on a small portion (3%) of the test documents
and tested on the remaining ones. Since the original 5 seed pairs that Snowball
used did not appear in the collection at our disposal, we chose 5 other pairs as
examples. We used no counterexamples and hence omitted the Training Phase
of our algorithm. LEILA quickly finds the pattern “Y-based X”. This led to very
high precision and good recall, compared to Snowball – even though Snowball
was trained on a much larger training collection. Table 10 shows the results.

Table 10: Results on the Snowball Corpus with Headquarters
M System #D #O #C #I Precision Recall F1
S LEILA(SVM) 54 92 82 165 89.13% 49.70% 63.81%
S LEILA(kNN) 54 91 82 165 90.11% 49.70% 64.06%
S Snowball 54 144 49 165 34.03% 29.70% 31.72%
I LEILA(SVM) 54 50 48 126 96.00% 38.10% 54.55%
I LEILA(kNN) 54 49 48 126 97.96% 38.10% 54.86%
I Snowball 54 64 31 126 48.44% 24.60% 32.63%

M – Metric (S: Standard, I: Ideal). Other abbreviations as in Table 8

CV System. The CV-system differs from LEILA, because its ideal pairs are a
table, in which each entity is assigned to its most likely concept according to a
human understanding of the text – independently of whether there are explicit
definitions for the entity in the text or not. We conducted two experiments:



82 4.4. LEILA: Conclusion

First, we used the document set used in Cimiano and Völker’s original paper
[43], the Lonely Planet corpus. To ensure a fair comparison, we trained LEILA
separately on the Wikicomposers corpus, so that LEILA cannot have example
pairs in its output. The relation is the type relation. For the evaluation, we
calculated precision and recall with respect to an ideal table provided by the
authors. Since the CV-system uses a different ontology, we allowed a distance
of 4 edges in the WordNet hierarchy to count as a match (for both systems).
Since the explicit definitions that our system relies on were sparse in the corpus,
LEILA performed worse than the competitor. Table 11 shows the results (under
the relaxed ideal metric).

Table 11: Results on Lonely Planet Corpus with Type Relation
System #D #O #C #I Precision Recall F1
LEILA(SVM) – 159 42 289 26.42% 14.53% 18.75%
LEILA(kNN) – 168 44 289 26.19% 15.22% 19.26%
CV-system – 289 92 289 31.83% 31.83% 31.83%

Abbreviations as in Table 8

In a second experiment, we had the CV-system run on the Wikicomposers cor-
pus. As the CV-system requires a set of target concepts, we gave it the set of
all concepts in our ideal pairs. Furthermore, the system requires an ontology on
these concepts. We gave it the WordNet ontology, pruned to the target concepts
with their super-concepts. We evaluated by the Relaxed Ideal Metric, again al-
lowing a distance of 4 edges in the WordNet hierarchy to count as a match (for
both systems). This time, our competitor performed worse (see Table 12). This
is because our ideal table is constructed from the definitions in the text, which
our competitor is not designed to follow.

Table 12: Results on Wikicomposers Corpus with Type Relation
System #D #O #C #I Precision Recall F1
LEILA(SVM) 87 336 257 744 76.49% 34.54% 47.59%
LEILA(kNN) 87 367 276 744 75.20% 37.10% 49.68%
CV-system 87 134 30 744 22.39% 4.03% 6.83%

Abbreviations as in Table 8

These experiments only serve to show the different philosophies in the definition
of the ideal pairs for the CV-system and LEILA. The CV-system does not
depend on explicit definitions, but it is restricted to the type-relation.

4.4 Conclusion

Summary. This section has introduced the information extraction tool LEILA.
A linguistic analysis of the input sentences allows LEILA to learn patterns that
are robust against surface variations. By taking into account counterexamples,
LEILA can also identify negative patterns. LEILA uses machine learning to
generalize positive and negative patterns, thus becoming robust against false
positive patterns. Our theoretical analysis has shown that the influence of false
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positive patterns converges to zero as the corpus size grows. Our experiments
have shown that LEILA outperforms other state-of-the-art methods in informa-
tion extraction.

Discussion. LEILA uses a deep linguistic analysis of the input sentence. Thus,
its patterns are more robust to surface variations than the patterns employed
by other systems, such as Snowball [2]. This observation is likely to carry over
to systems such as KnowItAll [56] or Alice [11]. These systems also use non-
linguistic patterns, but were not considered in the experiments because they
use the whole corpus as a Web. If the Web is used as a corpus, the situation
changes: Linguistic parsing is barely applicable, due to the time needed to parse
a single document. On the other hand, stable linguistic patterns are also of lesser
importance in this scenario, because the system can rely on the redundancy of
the Web. This tradeoff entails that non-linguistic systems may be the better
choice for use on the Web, whereas LEILA is more adequate for a scenario with
a given corpus of documents.

Unfortunately, LEILA cannot produce ontological facts directly. First,
LEILA only extracts words, not entities. Thus, a disambiguation process would
be necessary to make LEILA extract ontological facts in a canonical form.
LEILA shares this problem with all approaches discussed in this chapter. Sec-
ond, LEILA requires counterexamples for the target relation. These may be dif-
ficult to provide for certain relations. Third, LEILA shows weak performance
when applied to inhomogeneous texts (such as random Internet documents).
In the next chapter, we will show how these issues can be overcome. LEILA
will be adapted for use with YAGO. For this purpose, the linguistic analysis of
LEILA will have to be simplified. The idea of using counterexamples for pat-
tern learning, however, will remain. It is the crucial ingredient of our integrative
knowledge gathering system SOFIE.
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Chapter 5

SOFIE

The goal of this thesis is to describe a system that can gather ontological knowl-
edge. This chapter introduces the third component of this system, the informa-
tion integration system SOFIE1. SOFIE integrates the information extracted
by LEILA into YAGO, thus forming the synthesis of the first two components
and completing the system. This chapter will first give an overview of SOFIE
and related work. It will then proceed to describing the model of SOFIE and
its implementation. The last section will present an empirical validation of our
approach.

5.1 Overview

5.1.1 Problem statement

This chapter discusses a very general task: the automatic gathering of onto-
logical knowledge2. Gathering knowledge for an ontology is different from pure
information extraction as discussed in Chapter 4. On one hand, it is more dif-
ficult, because words have to be disambiguated to entities. On the other hand,
it can be easier, because the information that is already present in the ontology
can help improving the extraction quality. Consider an example. Assume that
a knowledge gathering system encounters the following sentence

Einstein attended secondary school in Germany.

Knowing that “Einstein” is the family name of Albert Einstein and knowing
that Albert Einstein was born in Germany, the system might deduce that “X
attended secondary school in Y” is a good indicator of X being born in Y . Now
imagine the system finds the sentence

Elvis attended secondary school in Memphis.

Many people have called themselves “Elvis”. But in the present case, assume
that the context indicates that Elvis Presley is meant. But the system already

1Self-Organizing Framework for Information Extraction
2This task is sometimes split into Ontology Learning (the gathering of new relations and

classes) and Ontology Population (the extraction of new individuals and relation instances)
[91, 40].
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knows (from the facts it has already gathered) that Elvis Presley was born in the
State of Mississippi. Knowing that a person can only be born in a single location
and knowing that Memphis is not located in Mississippi, the system concludes
that the pattern “X attended secondary school in Y” cannot mean that X was
born in Y . Re-considering the first sentence, it finds that “Einstein” could have
meant Hermann Einstein instead. Hermann was the father of Albert Einstein.
Knowing that Hermann went to school in Germany, the system figures out that
the pattern “X attended secondary school in Y” rather indicates that someone
was educated in some place. This, in turn, makes it deduce that Elvis was
educated in Memphis3.

It is this kind of interaction between the ontology and the information ex-
traction that is needed to deduce ontological facts of high quality. Here, we aim
at a system that can accomplish this bridging in a unified framework.

5.1.2 Related Work

There are numerous approaches that aim at gathering ontological facts. Since
the task is so general, the related work spans a wide area, including the related
work discussed already for YAGO (Section 3.1.2) and for LEILA (Section 4.1.2).
This section aims at discussing all related work, pointing to the respective pre-
vious discussions whenever possible.

Non-Ontological Approaches. Some systems extract non-ontological infor-
mation. This means, for example, that their output does not have the form
of facts, that they do not disambiguate words to entities or that they do not
extract well-defined relations. These approaches are presented in more detail in
Section 4.1.2 ([2, 124, 105, 45, 65, 61, 162, 111, 22, 125, 154, 105]) and Section
3.1.2 ([56, 28, 10, 55]). LEILA also belongs to the non-ontological approaches.
In this chapter, we aim at a system that produces ontological knowledge.

Related Approaches with Different Goals. Some approaches aim at dis-
covering new relations ([90, 144]). This task can be seen as a sub-discipline of
ontological knowledge gathering. Other approaches aim at classifying patterns
into relation clusters ([37, 160]), a remotely related goal, which is explained in
more detail in Section 4.1.2. The DBLife project [52] uses information extrac-
tion, but aims at building a community portal rather than an ontology. The
LIBRA project [161, 100] has a slightly different focus, aiming at discovering
entities in Web pages. Here, we aim at extending an ontology.

Focused Approaches. Some approaches aim at extracting instances of a
single relation, mostly the type relation. These include [43, 64, 41, 123, 42]
and also some approaches discussed in more detail in Section 4.1.2 ([30, 60,
155, 42, 25, 41, 45]). Here, we aim at a system that can add knowledge about
any relation. Some approaches are designed for a certain area, such as the
biomedical domain ([109]) or the business domain ([117]). Here, we aim at a
general purpose approach.

3This is actually true. Albert Einstein went to secondary school in Switzerland.
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Semi-Structured Approaches on Wikipedia. A number of approaches
extract ontological information from the semi-structured part of Wikipedia ([8,
107, 145]). These approaches are presented in detail in Section 3.1.2. YAGO
belongs to this class as well. Here, we aim at gathering even more knowledge,
by exploiting also the natural language part of Wikipedia and other resources.

Human Expert Approaches. There exist projects for constructing ontologi-
cal knowledge by hand ([59, 95, 102]). These approaches are presented in more
detail in Section 3.1.2. The results are of impressive quality, but require costly
human work. This holds also true for the semi-automatic approaches to Ontol-
ogy Learning ([113, 92, 4, 91, 32]). Again other approaches that require human
input are presented in more detail in Section 4.1.2 ([75, 126, 155, 153]). Here,
we aim at an automated system.

Ontology-Internal Approaches. Some approaches aim at finding a mapping
between ontologies ([108]) or at deriving new knowledge from within an ontology
([47]). One prominent approach in this direction is the Linking Open Data
project [18], which is described in more detail in Section 3.1.2. In this chapter,
we aim at a system that can find information that has not yet been codified into
ontologies.

Community-Based Approaches. Some projects are based on the contribu-
tion of volunteers. The most prominent approaches are the Semantic Wikipedia
project [87] and Freebase4. As discussed in more detail in Section 3.1.2, the
benefit of these approaches will depend on their acceptance by the community
and effective means of quality control. The project “Intelligence in Wikipedia”
[146] is an integrative approach. It builds on Wikipedia as a community re-
source in combination with automatic approaches for information extraction.
The automatic approaches (KYLIN [150], TextRunner [10] and KOG [151]) are
discussed in their respective categories in the present section.

Co-Occurrence Analysis. De Boer et al. [20] present an approach that is
based on co-occurrences of entities in Web documents. The approach requires
a core ontology that provides the following items:

1. a target relation (e.g., artistGenre)

2. a limited number of known instances of the target relation (the seed pairs)

3. the domain and range of the target relation (e.g., artist and genre)

4. the set of instances of the domain and of the range of the target relation

The goal of the system is to find new instances of the target relation. For
this purpose, the system first chooses one instance of the range of the target
relation (e.g. Expressionism for Genre). The system uses a search engine to
retrieve Web documents about this instance. In each retrieved document, it
finds the occurrences of instances of the domain of the target relation (i.e., for
artistGenre, the system finds all artists). It analyzes what proportion of them

4http://www.freebase.com

http://www.freebase.com�
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also appear in the seed pairs (e.g., what proportion of the artists mentioned in
the document are known as expressionistic artists in the seed pairs). Documents
with a high proportion are likely to be lists of good candidates. For example, if a
document mentions several artists and 70% of them are expressionistic artists,
it is likely that the other artists are also expressionistic. Finally, the system
constructs facts from the promising entities (such as (VanGogh, artistGenre,
Expressionism)). The authors have run various experiments with their system.
They have measured precision and recall with respect to a gold standard and
achieved F-values of up to 72%.

The beauty of this approach is that it works without any pattern matching.
Thus, it is applicable to both natural language text and semi-structured content
alike. However, the approach relies on two assumptions: First, it requires that
the target relation is not a one-to-one relation. Thus, it can be applied less well
to relations such as hasBudget, where one element of the range is related to
relatively few elements of the domain. Second, it relies on the existence of lists
(such as documents listing all expressionistic authors). While these lists may
exist for some relations, they may not exist for others. For example, there might
be few Web documents listing all people born on a specific day in a specific year.
Worse, there may be cases in which a fact occurs only once on the Web (e.g., in
Wikipedia). Thus, while the approach could clearly be highly productive (e.g.,
in combination with YAGO), we will investigate more techniques for knowledge
gathering in this chapter.

Alice. Banko et al. have presented an approach called Lifelong Learning [11]
and implemented it in the Alice system. Alice is based on a core ontol-
ogy (presently WordNet [59]) and aims to extend it by new facts. Alice uses
the TextRunner [10] to retrieve non-canonical facts. For example, TextRunner
might gather the fact (“bananas”, “provide”, “vitamin c”). Alice maps the
words to entities in the core ontology (“bananas” to banana and “vitamin c”
to VitaminC), presently by stemming the word and choosing its most frequent
meaning (see Section 3.2.1). In addition to discovering new relations and to
gathering new facts, Alice exhibits three novel capabilities:

1. Class Discovery: Alice can take known classes (such as food) and
extend them by new classes (such as healthyFood).

2. Range and Domain Discovery: Alice gathers relation instances and
determines the domain and range of relations (such as (fruit, provides,
vitamin)). Although this does not canonicalize the relations (they are
still natural language words), it gives them a formal link to the ontology.

3. Guided Search: Alice will choose new areas to explore based on the
knowledge it already has. This is the implementation of the Lifelong
Learning Paradigm.

The authors have run Alice and have manually evaluated its output. Under a
very strict evaluation metric, Alice achieves a precision of 78%.

Alice has so far only been tried out on classes (such as fruit and food),
and not on individuals (such as ElvisPresley). Furthermore, Alice does not
yet make use of logical entailments, which would be necessary to cope with our
sample scenario introduced above. Thus, while the contributions of Alice are a
clear step ahead, we will continue our survey of knowledge gathering techniques.
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PORE. Wang et al [143] have presented an approach called Positive-Only Re-
lation Extraction (PORE). PORE is a pattern matching approach, which has
been implemented for relation instance extraction from Wikipedia (see Section
4.1.2 for a discussion of pattern matching). PORE is given a target relation
(e.g. directedBy for movies) and proceeds in five steps:

1. Seed Pair Extraction: PORE requires a certain number of known in-
stances of the target relation, the seed pairs. In the present implemen-
tation, these seed pairs are extracted automatically from the Wikipedia
infoboxes (see Section 3.1.4.2 for a description of Wikipedia infoboxes).

2. Entity Extraction: PORE identifies all entities in Wikipedia and ex-
tracts features for them. For example, the entity AnnieHall is extracted
from the Wikipedia article about the movie Annie Hall. Its features are (1)
its class, as mentioned in the first defining sentence of the article (comedy-
Film) and (2) the information about the entity as given in the infoboxes
(writtenBy WoodyAllen) and (3) its categories (romanticComedyFilm).

3. Pattern Extraction: For each pair of entities that co-occur in a sentence,
PORE extracts a pattern. This pattern consists of the words around
the first entity, the words between the entities and the words around the
second entity. The same pattern can occur with multiple entity pairs.

4. Data Filtering: PORE tries to determine entity pairs that are highly
unlikely to be instances of the target relation. It does this by comparing
the features of a candidate entity to the features of the entities in the seed
pairs. For example, in most seed pairs for directedBy, the first entity will
exhibit the feature movie. If in a given candidate pair, the first entity
does not exhibit this feature, the pair is less likely to be an instance of
directedBy. This step has similarities with the type checking done in
YAGO (Section 3.2.2), although it is done by statistical means rather
than logical ones.

5. Candidate Classification: PORE has some positive entity pairs (from
the seed pairs) and numerous candidate pairs. It aims to classify the
candidate pairs into instances of the target relation or non-instances, given
their features and given the patterns in which they occur. The authors
have developed an extension of a transductive classification algorithm, B-
POL, which can classify the pairs given only positive examples. The pairs
classified as positive are proposed as new instances of the target relation.

The authors have run PORE for 3 relations on Wikipedia. They have evaluated
the results manually and achieve F-values of up to 80%.

PORE is a holistic approach, which makes clever use of entity features to
figure out whether a pair of entities is an instance of the target relation or not.
One aspect that appears unexplored is whether the pairs excluded by the Data
Filtering could rather be used as negative samples for the classification (as it is
done in LEILA, see Section 4.2.2). Furthermore, PORE does not incorporate
world knowledge, which would be necessary for our sample scenario. Hence, we
continue our survey of knowledge gathering methods.



90 5.1. SOFIE: Overview

KYLIN. The KYLIN system [150] forms the basis of the KOG [151] ontology.
KYLIN itself aims at filling the infoboxes in Wikipedia. As the authors explain,
Wikipedia’s infoboxes suffer from several shortcomings. These include incom-
pleteness (not all articles have an infobox, not all infoboxes have all attributes),
inconsistency, schema drift (i.e., multiple attributes for the same relation) and
lack of typing (the domain and range of the attributes are not explicit). KYLIN
embarks to ease some of these shortcomings in three steps:

1. Article Classification: KYLIN predicts which articles could potentially
lack a given type of infobox. For example, if the majority of articles about
US counties have an infobox labeled “US County”, but some articles about
US counties lack such an infobox, then these articles should probably be
equipped with a “US County” infobox. Currently, KYLIN uses a simple
keyword-based heuristic to detect these articles. The task is closely related
to determining the class of an article entity (see Section 3.2.1).

2. Sentence Classification: KYLIN knows all attributes that appear in
the infoboxes of a given type (e.g., it knows that “area” is an attribute
of the US county infoboxes). In the articles that do have a value for a
given attribute, KYLIN attempts to find that value in the article text.
For example, if “area = 18000 sq km” appears in the infobox of a US
county article, KYLIN attempts to find the word “18000 sq km” in the
article. This way, it collects sentences that typically express the relation
of the attribute (e.g., “has an area of X”). By collecting these sentences
as positive samples and all other sentences as negative samples, KYLIN
learns a classifier on sentences for the attribute. This procedure is very
similar to pattern matching (see Section 4.1.4), but since one entity is
given by the title of the article, the task that KYLIN faces is different. If
an infobox in another article lacks the attribute, KYLIN uses the classifier
to classify all sentences in that article. If a sentence is classified as positive,
KYLIN proposes the value found in the sentence as a value for the missing
attribute.

3. Link Generation: In Wikipedia, some entity occurrences are hyperlinked
to their articles (e.g., an occurrence of Albert Einstein may be a hyperlink
to the Wikipedia article about Einstein). Some occurrences, however, are
not linked. KYLIN spots unlinked entity occurrences and collects poten-
tial articles to which the entity could be linked. KYLIN uses heuristics
as well as statistical disambiguation techniques to determine the correct
article.

The authors have conducted a manual evaluation of KYLIN and report precision
rates between 70% and 100%.

KOG. KOG [151] is the KYLIN Ontology Generator. KOG first uses KYLIN
to complete and add infoboxes on Wikipedia. Then, it sets out to clean the
infobox data in 4 steps:

1. Recognizing Duplicate Infobox Types: Sometimes, the same class of
things (e.g., US counties) are described by two types of infoboxes (e.g.,
uscounty and us county). KOG uses the Wikipedia redirect pages, the
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Wikipedia editing history and name similarity heuristics to detect and
merge equivalent infobox types.

2. Assigning Meaningful Names: Some infobox types have obscure
names such as abl. KOL uses the Wikipedia redirect links, the Wikipedia
categories of the respective articles and Google spell checking to find more
meaningful names for the types (such as AmericanBaseballLeague instead
of abl).

3. Inferring Attribute Ranges: KOG collects all values of a given at-
tribute (e.g., all people who occur as values of the attribute directedBy).
For each value, it determines the class of which the value is an instance.
KOG uses the YAGO hierarchy and the DBpedia hierarchy [8] for this pur-
pose. It chooses the superclass of the most frequent classes as the range
for the attribute. For example, if most people that appear in a directedBy
attribute are instances of the class AmericanMovieDirectors or the class
ItalianMovieDirectors, KOG chooses the superclass movieDirectors. This
task is similar to the task solved by Alice [11], see above.

4. Attribute Mapping: Some attributes are similar, even if they appear
in different infobox types. For example, both the infoboxes for actors and
the infoboxes for scientists have an attribute spouse. KOG uses string
matching techniques, information from the taxonomy (s.b.) and data
from the edit history of pages to identify such attributes.

Next, KYLIN builds a taxonomy in 2 phases:

1. Article Subsumption: Using name matching, pattern matching and in-
formation from the Wikipedia categories, the edit histories, and WordNet
[59], KOG establishes which article entity must be a subclass of which
other article entity. For example, KOG figures out that EnglishPublic-
School must be a subclass of PublicSchool.

2. Connection to WordNet: As YAGO, KOG aims to connect the
Wikipedia entities to WordNet. For this purpose, KOG uses the mapping
that exists already in YAGO and the mapping that exists already in DBpe-
dia [8], and trains a classifier to detect subsumption between a Wikipedia
entity and a WordNet entity. KOG uses Markov Logic Networks [112] to
take into account rules such as the transitivity of subClassOf.

The authors have evaluated the output of KOG and report very high precision
rates. In particular, the mapping to WordNet has an accuracy of 97% (just as
YAGO’s). KOG uses ideas from YAGO (joining Wikipedia and WordNet) and
from DBpedia (taking attributes as relations). It improves on YAGO by auto-
matically discovering new relations. It improves on DBpedia by canonicalizing
the relations and by going beyond the data given in the infoboxes. KOG is very
successful, but tailored to Wikipedia. We aim at discovering an approach that
can deal with arbitrary input.

Declarative Information Extraction. Shen et al. [120] propose a frame-
work called declarative information extraction. The building blocks of this
framework are procedural predicates. A procedural predicate is a small piece
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of side-effect-free programming code (e.g., a function or method in C or Java).
Such a predicate acts as a function, which, given some arguments as input, runs
an algorithm and either (1) fails or (2) produces some arguments as output.
For example, one procedural predicate could decide whether a certain substring
appears in another string. The framework of declarative information extraction
allows combining the procedural predicates to rules (in the form of Datalog).
For example, one rule can state that X must be the author of paper Y if X ap-
pears in at least three documents together with the word “author” and paper Y .
Finally, automated reasoning on the rules can be used to extract information
from documents. The authors show that their approach allows for optimiza-
tion techniques that can speed up the information extraction considerably. By
encapsulating the non-declarative code into procedural predicates, the frame-
work provides a clean, declarative model for rule-based information extraction.
The rules of the system, however, have to be designed manually. It would be
desirable if human input could be reduced even further.

Logical Knowledge. All of the approaches mentioned here have their benefits
and have advanced the understanding of information extraction and ontology
construction. We observe, however, that none of the approaches takes into
account logical background knowledge – such as for example that people must
be born before they die. Such knowledge might be highly useful, because it
can exclude impossible hypotheses and deduce safe hypotheses. As shown in
our sample scenario, there may be cases where logical reasoning is mandatory.
Although several authors have mentioned the possibility of logical reasoning
([120, 151, 11]), it has not been implemented. It would be nice to have an
approach that unifies information extraction, ontology construction and logical
reasoning. This is what SOFIE does.

5.1.3 Contribution

This chapter presents SOFIE, a new system for ontological knowledge gathering.
SOFIE casts the task of information extraction into a logical reasoning problem.
In SOFIE, word disambiguation, pattern matching, and rule-based reasoning on
the ontology all become part of one unified framework. More precisely, SOFIE
combines three capabilities in a single system:

1. Word Disambiguation: SOFIE can take into account all meanings of a
word. Based on disambiguation strategies, it can decide for the most likely
meaning of a word. Different from existing systems, however, SOFIE will
automatically re-consider the disambiguation if more evidence for another
meaning becomes apparent.

2. Pattern Matching: Like LEILA and many other systems (see Section
4.1.2), SOFIE finds patterns in text documents to extract facts. Unlike
the other systems, SOFIE can reason on the plausibility of patterns and
reject patterns if counter evidence becomes available.

3. Ontological Reasoning: SOFIE makes full use of the background knowl-
edge of the ontology. SOFIE can take into account constraints on the rela-
tions, links between hypotheses and connections to the existing knowledge.
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All of these components are naturally joined in the unifying framework of
SOFIE. The goal of SOFIE is to understand a text in the sense of Section 1.3.1.
The following sections will first introduce the model of SOFIE. Then, they will
discuss the implementation of SOFIE and present our experiments.

5.2 Model

SOFIE is designed to extend an existing ontology. Hence, in the following,
we assume a given ontology. For our experiments, we used YAGO, but our
approach is open to any ontology. SOFIE extracts new information from text
documents. Hence, in the following, we assume a given corpus of documents.
In our experiments, we used documents downloaded from the Internet, but any
other source can be imagined. SOFIE casts the information extraction into a
logical reasoning problem. We will first introduce the notion of statements and
then proceed to the notion of rules. Finally, we will show how the model can
be cast into a weighted MAX SAT problem.

5.2.1 Statements

Wics. As a knowledge gathering system, SOFIE has to address the problem of
polysemy. In general, most words have several meanings. The word “Java”, for
example, can refer to the programming language or to the Indonesian island.
In a given context, however, a word is very likely to have only one meaning
[62]. For example, the occurrences of the word “Java” in one Web document
are likely to refer either all to the island or all to the programming language
(unless the document is about the problems of polysemy). This gives rise to the
following definition:

Definition 18: [Word in Context ]
A word in context (wic) is a pair of a word and a context.

For us, the context of a word will simply be the document in which the word
appears. Thus, a wic is essentially a pair of a word and a document identifier5.
We use the notation word@doc. For example, we identify the word “Java” in
the document D8 by

Java@D8

This way, the word “Java” in the document about Indonesian islands forms
one wic, whereas the word “Java” in another document (be it about islands
or programming languages) forms another wic. Once one occurrence of a wic
has been disambiguated, it is assumed that all other occurrences of the wic
are disambiguated as well. For example, once it has been figured out that
document D8 is about programming languages, all occurrences of Java@D8 will
be assumed to refer to the programming language. When talking about patterns
in text documents, we will henceforth be precise and say that a pattern appears

5A wic is related to a KWIC (keyword in context), also known as a concordance. A con-
cordance is a word together with an ordered vector of the immediate surrounding words [94].
Thus, two occurrences of the same word in one document may form different concordances,
but only one wic.



94 5.2. SOFIE: Model

with two wics instead of two words. Following the all-embracing definition of
entities (Section 1.3.2), wics are also entities.

Facts and Hypotheses. For SOFIE, we will deal with relations of arbitrary
arity. Hence we use a prefix notation for statements. Each statement can have
an associated truth value of 1 or 0. We denote the truth value of a statement
in square brackets:

bornIn(AlbertEinstein, Ulm)[1]

In compliance with the definition in Section 1.3.2, a statement with truth value 1
is called a fact. A statement with an unknown truth value is called a hypothesis.
We will now see how both the ontology and the corpus can be interpreted as
sources of facts.

Ontological Facts. SOFIE is designed to extend an existing ontology. We
consider the ontology a set of facts. In the case of YAGO, this looks as follows:
Technically speaking, the YAGO ontology is a reification graph. With our
definitions, however, YAGO can also be interpreted as a set of facts. Here is an
excerpt of YAGO in this light:

bornIn(AlbertEinstein, Ulm)[1]
bornOnDate(AlbertEinstein, 1879-03-14)[1]
...

This representation can also be enhanced by including the fact identifier of
each fact as an additional argument. This would allow representing the n-ary
relations of YAGO (see Section 2.2.3). For simplicity, however, we limit ourselves
to the binary facts in YAGO for the time being.

Textual Facts. LEILA will extract textual information from the corpus. This
information also takes the form of facts. One type of facts makes assertions
about the number of times that a pattern occurred with two wics. For example,
LEILA might find that the pattern “X went to school in Y” occurred with the
wics Einstein@D29 and Germany@D29:

patternOcc(“X went to school in Y”, Einstein@D29, Germany@D29)[1]

Another type of facts can state how likely it is from a linguistic point of view that
a wic refers to a certain entity. We call this likeliness value the disambiguation
prior. We will discuss later how the disambiguation prior can be computed.
Here, we just give an example for facts about the disambiguation prior of the
wic Elvis@D29:

disambPrior(Elvis@D29, ElvisPresley, 0.8)[1]
disambPrior(Elvis@D29, ElvisCostello, 0.2)[1]

Other types of textual facts can be imagined. For example, LEILA could pro-
duce facts that tell which wic occurred in which document or which wic occurred
how often with which other wic.

Hypotheses. Based on the ontological facts and the textual facts, SOFIE will
form hypotheses. These hypotheses can concern the disambiguation of wics.
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For example, SOFIE can hypothesize that Java@D8 should be disambiguated
as the programming language Java:

disambiguateAs(Java@D8, JavaProgrammingLanguage)[?]

We use a question mark to indicate the unknown truth value of the statement.
SOFIE will also hypothesize about whether a certain pattern expresses a certain
relation:

expresses(“X was born in Y”, bornInLocation)[?]

SOFIE also forms hypotheses about potential new facts. For example, SOFIE
could establish the hypothesis that Java was developed by Microsoft:

developed(Microsoft, JavaProgrammingLanguage)[?]

Unification. By casting both the ontology and the corpus analysis into state-
ments, SOFIE unifies the domains of ontology and information extraction. For
SOFIE, there exist only statements. SOFIE will try to figure out which hy-
potheses are likely to be true. For this purpose, SOFIE uses rules.

5.2.2 Rules

Literals and Rules. SOFIE will use logical background knowledge to figure
out which hypotheses are likely to be true. This knowledge takes the from of
rules. Rules are based on literals:

Definition 19: [Literal ]
A literal is a statement that can have placeholders for the relation or some of
the entities.

Here is an example of a literal with uppercase strings as placeholders:

bornIn(X, Ulm)

Now, a rule is basically a propositional formula over literals:

Definition 20: [Rule]
A rule over a set of literals L is one of the following

• an element of L
• an expression of the form ¬R, where R is a rule over L
• an expression of the form (R1 ¦ R2), where R1 and R2 are rules over L

and ¦ ∈ {∧,∨,⇒,⇔}.

As usual, we omit the outermost brackets and brackets around ∧-expressions.
With these conventions, the following line is a rule stating that whoever is born
in Ulm is not born in Timbuktu:

bornIn(X, Ulm) ⇒ ¬ bornIn(X, Timbuktu)
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As in Prolog and Datalog, all placeholders are implicitly universally quantified.
We postpone the discussion of the formal semantics of the rules to Section 5.2.3
and stay with an intuitive understanding of rules for the moment.

Grounding. The relation between statements and literals is as follows:

Definition 21: [Ground Instances]
A ground instance of a literal is a statement obtained by replacing the place-
holders by entities. A ground instance of a rule is a rule obtained by replacing
all placeholders by entities. All occurrences of one placeholder must be replaced
by the same entity.

For example, the following is a ground instance of the rule mentioned above:

bornIn(AlbertEinstein, Ulm) ⇒ ¬ bornIn(AlbertEinstein, Timbuktu)

SOFIE’s Rules. We have developed a number of rules for SOFIE. One of the
rules states that a functional relation should not have more than one second
argument for a given first argument:

R(X, Y )
∧ type(R, function)
∧ different(Y, Z)
⇒ ¬ R(X, Z)

This rule uses the virtual relation different (see Section 2.2.8). The rule guar-
antees, for example, that people are not born in more than one place. Since
disambiguatedAs is also a functional relation, the rule also guarantees that one
wic is disambiguated to at most one entity. In some sense, this rule is already
employed during the construction of YAGO (see Section 3.2.2).

There are also other rules, some of which concern the textual facts. One rule
says that if pattern P occurs with entities x and y and if there is a relation r,
such that r(x, y), then P expresses r. For example, if the pattern “X was born
in Y” appears with Albert Einstein and his true location of birth, Ulm, then it
is likely that “X was born in Y” expresses the relation bornInLocation. A naive
formulation of this rule looks as follows:

patternOcc(P, X, Y)
∧ R(X, Y )
⇒ expresses(P, R)

We need to take into account, however, that patterns hold between wics, whereas
facts hold between entities. Our model allows us to incorporate this constraint
in an elegant way:

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ R(X, Y )
⇒ expresses(P, R)
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There exists also a dual version of this rule: If the pattern expresses the relation
r, and the pattern occurs with two entities x and y, and x and y are of the correct
types, then r(x, y):

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ domain(R, DOM)
∧ type(X, DOM)
∧ range(R, RAN)
∧ type(Y, RAN)
∧ expresses(P, R)
⇒ R(X, Y )

By this rule, we are making a design choice: The pattern comes into play only
if the two entities are of the correct type. Thus, the very same pattern can
express different relations if it appears with different types. We will see in the
experiments (Section 5.4) how this works in practice. Another rule makes sure
that the disambiguation prior influences the choice of disambiguation:

disambPrior(W, X, N)
⇒ disambiguatedAs(W, X)

Softness. More rules can be added, for example the rules from Section 2.2.5.
In general, it is impossible to satisfy all of the these rules simultaneously. For
example, as soon as there exist two disambiguation priors for the same wic,
both will enforce a certain disambiguation. Two disambiguations, however,
contradict the functional constraint of disambiguatedAs. This is why certain
rules will have to be violated. Some rules are less important than others. For
example, if a strong disambiguation prior requires a wic to be disambiguated as
X, while a weaker prior desires Y , then X should be given preference – unless
other constraints favor Y . This is why a sophisticated approach is needed to
compute the most likely hypotheses. Before the next section discusses such a
sophisticated approach, Figure 8 summarizes our notions again.
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Ontological Facts Textual Facts Hypotheses
bornIn(Einstein, Ulm)[1]
...

patternOcc(...)[1]
disambPrior(...)[1]
...

expresses(
“X born in Y”,
bornIn)[?]

developed(
Microsoft,
JavaProg.)[?]

...

Rules

R(X, Y ) ∧ type(R, function) ∧ different(Y, Z) ⇒ ¬ R(X, Z)
...

Figure 8: Statements and Rules

5.2.3 MAX-SAT Model

Design Alternatives. Abstractly speaking, SOFIE aims to find the hypothe-
ses that should be accepted as true so that a maximum number of rules is sat-
isfied. Different approaches are conceivable. We sketch each of them informally
before embarking on a formal definition of our approach.

• The problem can be cast into a rule-based setting, for example into a
Datalog program (as it is done in [120]). However, this would not allow
violating certain rules – which is a necessary desideratum.

• The problem can be cast into a maximum satisfiability problem (MAX SAT
problem). The MAX SAT problem is the task of, given a set of boolean
variables and a set of propositional logic formulae, assigning truth values
to the variables so that the number of satisfied formulae is maximized. In
our setting, the variables would be the hypotheses and the rules would be
transformed to propositional formulae on them. This view would allow
violating some rules, but it would not allow weighting them.

• The problem can be cast into a Markov Logic Network [112]. A Markov
Logic Network is concerned with a set of weighted first order logic for-
mulae f1, ..., fn over literals. For each formula fi, the Markov Logic Net-
work defines a function φi. φi takes as argument a possible state of the
world, i.e., a possible assignment of truth values to the ground instances
of the literals (e.g. {bornIn(Einstein, Ulm)=true, bornIn(Einstein, Tim-
buktu)=false,...})6. φi returns a real value that grows monotonically with
the number of ground instances of fi that are satisfied by the assignment.

6See [112] for a more precise definition of literals, ground instances and formulae and for
the necessary assumptions.
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It can be shown that the product
∏

i φi defines a probability distribution
over the possible states of the world. In particular, states that satisfy
a higher number of formulae have a higher probability. Markov Logic
Networks are very powerful and could be used to model our problem.
However, such a model would lift the problem to a more complex level
(that of inferring probabilities), usually involving heavy machinery. Fur-
thermore, Markov Logic Networks might not be able to deal efficiently
with the millions of facts that YAGO provides.

We chose a fourth option, which is simple, yet powerful enough to model our
problem: the weighted maximum satisfiability setting (Weighted MAX SAT).

Weighted MAX SAT. The weighted MAX SAT problem is based on the
notion of clauses:

Definition 22: [Clause]
A clause C over a set of variables X consists of

• a positive literal set c1 = {x1
1, . . . , x

1
n} ⊆ X

• a negative literal set c0 = {x0
1, . . . , x

0
m} ⊆ X

We denote C by

(x1
1 ∨ x1

2 ∨ . . . ∨ x1
n ∨ ¬x0

1 ∨ ¬x0
2 ∨ . . . ∨ ¬x0

m)

A weighted clause over X is a clause C over X with an associated weight
w(C) ∈ R+.

Given a clause C over a set X of variables, we say that a variable x ∈ X appears
with polarity p in C, if x ∈ Cp. Consider an example: If X = {w, x, y, z} is a
set of variables, then the following is a clause over X :

(w ∨ x ∨ ¬y ∨ ¬z)

In this clause, w and x appear with positive polarity and y and z appear with
negative polarity. Intuitively, the clause says that one of the variables w, x
should be assigned a truth value of 1, while one of the variables y, z should be
assigned a truth value of 0. This intuition is formalized as follows:

Definition 23: [Assignment, Partial Assignment, Satisfying Assignment ]
An assigment for a set X of variables is a function v : X → {0, 1}. A partial
assignment for X is a partial function v : X ⇀ {0, 1}. A (partial) assignment
for X satisfies a clause C over X , if there is an x ∈ X , such that x ∈ Cv(x).

In the example, an assignment v with v(w) = 1, v(x) = 1, v(y) = 0, v(z) = 1
would be a satisfying assignment. We use the notation ¬t = 1 − t for truth
values t. Now we are ready to define the weighted MAX SAT problem:

Definition 24: [Weighted MAX SAT ]
Given a set C of weighted clauses over a set X of variables, the weighted MAX
SAT problem is the task of finding an assignment v for X that maximizes the
sum of the weights of the satisfied clauses:

∑

c ∈ C is satisfied in v

w(c)
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An assignment that maximizes the sum of the satisfied clauses in a weighted
MAX SAT problem is called a solution of the problem.

SOFIE. Intuitively speaking, the problem that SOFIE faces is, given a set
of facts, a set of hypotheses and a set of rules, finding truth values for the
hypotheses so that a maximum number of rules is satisfied. Now, this problem
can be cast into a weighted MAX-SAT problem. In the following, we assume a
finite set of rules. Furthermore, we assume a finite set of ontological facts and
a finite set of textual facts. These assumptions implicitly define a finite set of
entities. We proceed as follows:

1. Every rule is syntactically replaced by all of its grounded instances. Since
the set of entities is finite, the set of ground instances is finite as well.

2. Each ground instance is transformed to one or multiple clauses as usual
in propositional logic. Here, we give a pattern that captures all rules
introduced in Section 5.2.2:

p1 ∧ . . . ∧ pn ⇒ c Ã (¬p1 ∨ . . . ∨ ¬pn ∨ c)

3. The set of all statements that appear in the clauses becomes the set of
variables. Note that these statements will include not only the ontological
facts and the textual facts, but also all hypotheses that the rules construct
from them.

These steps leave us with a set of variables and a set of clauses. Figure 9 exem-
plifies this process:

Rule: bornIn(X, Ulm) ⇒ ¬ bornIn(X, Timbuktu)

Ground instances: bornIn(Einstein, Ulm) ⇒ ¬ bornIn(Einstein, Timbuktu)
bornIn(Microsoft, Ulm) ⇒ ¬ bornIn(Microsoft, Timbuktu)
...

Clauses: (¬ bornIn(Einstein, Ulm) ∨ ¬ bornIn(Einstein, Timbuktu))
(¬ bornIn(Microsoft, Ulm) ∨ ¬ bornIn(Microsoft, Timbuktu))
...

︸ ︷︷ ︸

Variables: bornIn(Einstein, Ulm), bornIn(Einstein, Timbuktu),
bornIn(Microsoft, Ulm), bornIn(Microsoft, Timbuktu),
...

Figure 9: Conversion to Weighted MAX SAT

Weighting. We partition the clauses into two sets as follows:

1. The clauses about the disambiguation of wics and the quality of patterns
may possibly be violated. These are the clauses that contain the relation
patternOcc or the relation disambPrior (see again Section 5.2.2). We
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assign them a fixed weight w. For the disambPrior facts, we multiply w
with the disambiguation prior, so that the prior analysis is reflected in the
weight.

2. The other clauses should not be violated. We assign them a fixed weight
W . W is chosen so large that even repeated violation (say, hundred-fold)
of a clause with weight w does not sum up to the violation of a clause
with weight W .

This way, every clause has a weight and we have transformed the problem into
a weighted MAX SAT problem.

Ockham’s Razor. The optimal solution of the weighted MAX SAT prob-
lem shall reflect the optimal assignment of truth values to the hypotheses. In
practice, however, there are often multiple optimal solutions. Among these, we
prefer the solution that makes the least number of hypotheses true7. We encode
this desideratum in our weighted MAX SAT problem by adding a clause (¬h)
with a small weight ε for each hypothesis h. This makes sure that no hypothesis
is made true if there is no evidence for it. The exact value for ε is not relevant.
Given two solutions of otherwise equal weight, ε just serves to choose the one
that makes the least number of hypotheses true.

5.3 Implementation

The implementation of SOFIE is based on an adaptation of LEILA and an
algorithm for the weighted MAX SAT problem. This section will discuss these
two components.

5.3.1 Adaptation of LEILA

Surface Patterns. LEILA has to be adapted in order to work together with
SOFIE. In the original version, LEILA produces deep linguistic patterns, in
which the grammatical dependencies of the words are represented. This proved
fruitful for standard natural language documents. The setting of SOFIE, how-
ever, is slightly different. First, we aim to process large numbers of documents.
The Link Grammar Parser is inconvenient for this purpose, because it is the
slowest component of LEILA. Second, we aim to process also information that
is not in the form of natural language sentences. This includes for example the
Wikipedia infoboxes as well as HTML-tables. It also concerns information in
note-form (such as “Che Guevara. Occupation: Revolutionary”). For these rea-
sons, we omit the linguistic analysis. For SOFIE, LEILA will work with surface
patterns for the time being. It does not matter in which way the patterns are
represented for the framework of SOFIE.

7This principle is known as Ockham’s Razor, after the 14th-century English logician
William of Ockham. In our setting (as in reality), omitting this principle leads to random
hypotheses being taken for true.
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Learning. In the original version, LEILA collects patterns and uses machine
learning to asses their quality. LEILA gathers patterns that appear with exam-
ples and invalidates them if they appear with counterexamples. We observe that
this is exactly the effect of the rules in SOFIE: Once a pattern occurs with a
(disambiguated) pair of entities that is known to be an instance of a relation, the
following rule will make SOFIE assume that the pattern expresses the relation:

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ R(X, Y )
⇒ expresses(P, R)

If the pattern occurs with some other pair, the following rule will make the pair
an instance of the relation, just like LEILA would also make the pair an instance
of the relation:

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ domain(R, DOM)
∧ type(X, DOM)
∧ range(R, RAN)
∧ type(Y, RAN)
∧ expresses(P, R)
⇒ R(X, Y )

Now suppose that the pattern occurs with a pair that is definitively not an
instance of the target relation (such as a wrong birth date). Then, in order to
satisfy the above rule, SOFIE has two options: Either the wics have to be dis-
ambiguated differently or SOFIE has to decide that the pattern cannot express
the relation. If the pattern occurs very often with counterexamples of this type,
SOFIE will have to decide that the pattern cannot express the relation. Thus,
the very essence of LEILA’s learning algorithm is already implicitly encoded in
the framework of SOFIE. Furthermore, SOFIE already possesses a huge wealth
of positive example pairs for all relations by help of the existing YAGO ontology.
Likewise, the rules on functional relations make sure that SOFIE also implicitly
possesses an infinite number of counterexamples. This way, the actual learning
phase of LEILA, including the management of examples and counterexamples,
is completely absorbed in the framework of SOFIE. As a result, LEILA is re-
duced to a pattern generator. The only thing LEILA has to do is producing
facts for pattern occurrences and disambiguation priors.

Pattern Occurrences. Being reduced to a surface pattern finding system,
LEILA will take a document and produce all patterns that appear between any
two entities. This procedure is shown in Algorithm 2.



5.3. SOFIE: Implementation 103

Algorithm 2: Find Patterns
Input: Document d

Maximal pattern length k (default: 6)
Output:Textual facts
1 preprocess(d)
2 t1...tn := tokenize(d)
3 T := ∅
4 FOR i=1 TO n
5 IF ti is a boundary THEN
6 T := ∅
7 IF ti is an interesting token THEN
8 FOR EACH j ∈ T
9 IF i− j > k THEN T := T \ {j}
10 ELSE IF i− j > 0
11 output patternOcc(“σ(tj+1) ... σ(ti−1)”, tj@d, ti@d)[1]
12 T := T ∪ {i}

This algorithm takes as input a document d and a maximal pattern length k. It
first preprocesses the document by decoding all characters and normalizing all
dates and numbers (line 1, as described in Section 4.2.1). Then, it tokenizes the
document; that is, it splits the document into small strings known as tokens.
The tokenization identifies (normalized) numbers, (normalized) dates and, in
Wikipedia articles, also Wikipedia hyperlinks. Furthermore, the tokenization
employs lists (such as a list of stop words, a list of nationalities and a list of US
states) to identify known words. Last, the tokenization identifies strings that
must be person names (e.g., because they are accompanied by a honorary title).8

The output of this procedure is a list of tokens (line 2). Next, the algorithm
iterates through all tokens (lines 4-12) and identifies “interesting” tokens (line
5). Since we are primarily concerned with information about individuals, all
numbers, dates and proper names are considered “interesting”. Whenever two
interesting tokens appear within a window of maximum size k in the list of
tokens, the algorithm produces a pattern (line 11). By the substitution σ,
the algorithm substitutes other interesting tokens in the pattern by some fixed
symbol ¦. For example, the pattern “X was born in 1980 in Y” is stored as
“X was born in ¦ in Y”. The pattern is output as a pattern occurrence fact
(line 11). The algorithm registers the index of the interesting token in the set
T , so that it can serve as a first argument in the next pattern occurrence (line
12). Care is taken not to cross sentence boundaries (lines 5-6). We made the
experience that a maximum pattern size of 6 is a reasonable choice.

Tokenizing Wikipedia. Wikipedia is a special type of corpus, because it pro-
vides both unstructured text and structured text. To harvest the structured
parts of Wikipedia as well, our tokenizer tokenizes the infoboxes and categories
as follows: It inserts the article entity before each attribute name and before
each category name. For example, the part “born in = Ulm” in the infobox
about Albert Einstein is tokenized as “Albert Einstein born in = Ulm”. By

8All preprocessing tools mentioned here are available at http://mpii.de/~suchanek/

downloads/javatools.

http://mpii.de/~suchanek/downloads/javatools�
http://mpii.de/~suchanek/downloads/javatools�
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this minimal modification, large parts of structured text become accessible to
SOFIE. Alternatively, the structured parts can be harvested by sesquiary pat-
terns, explained in the following.

Sesquiary Patterns. In some cases, it is known a priori that the document is
about a certain entity, the topic of the document. For example, every Wikipedia
article is about a single topic. In this case, it is likely that most sentences in the
document express a relation between the topic and some other entity. Thus, it
suffices to extract unary patterns around interesting words and to complement
them with the topic to binary patterns. We call such a pattern a sesquiary
pattern9. Algorithm 3 illustrates this method:

Algorithm 3: Find Sesquiary Patterns
Input: Document d

Maximal pattern length k (default: 3)
Topic entity e

Output:Textual facts
1 preprocess(d)
2 t1...tn := tokenize(d)
4 FOR i=1 TO n
5 IF ti is not interesting THEN CONTINUE FOR
6 j = i
7 WHILE i− j < k ∧ tj is no boundary DO j := j − 1
8 output patternOcc(“σ(tj+1) ... σ(ti−1)”, e, ti@d)[1]

The algorithm takes as input a document d about an entity e and a maxi-
mal pattern size k. It first preprocesses (line 1) and tokenizes (line 2) the
document (as described for Algorithm 2, without inserting the article entity).
Then, it identifies all interesting tokens (line 5, again as described for Algorithm
2). For each interesting token ti, it seeks backwards k tokens without crossing
sentence boundaries (line 7). From that position, j, it constructs the pattern
“tj+1 ... ti−2 ti−1” between e and ti (line 8). As in Algorithm 2, the substitution
σ replaces interesting tokens in the pattern itself by the special symbol ¦. The
output is a set of patternOcc facts with sesquiary patterns.

Sesquiary patterns allow us to extract information from documents that have
the form of notes. Consider as an example the following document d about John
Lennon:

John Lennon
Born in: Liverpool
Genre: Rock
...

In this example, the following patterns are extracted

patternOcc(“Born :”, JohnLennon@d, Liverpool@d)[1]
patternOcc(“Genre :”, JohnLennon@d, Rock@d)[1]
...

9These patterns are neither binary nor unary, but “1 1
2

ary”, that is sesquiary.
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We made the experience that a maximal pattern length of 3 is usually sufficient.
In general, sesquiary patterns can work on information that is not in the form of
proper sentences. Furthermore, sesquiary patterns can be productive without
anaphora resolution (see Section 4.1.2). This technique also allows taking into
account the Wikipedia infoboxes in a natural way, because each line in the
infobox will generate one sesquiary pattern (see again Section 3.1.4.2 for the
form of infoboxes in the Wiki Markup Language). Sesquiary patterns can be
generalized to encompass not just the preceding words, but also the following
words or even other features of the surrounding text. In principle, the infobox
filling algorithm of KYLIN [150] uses such a strategy when finding attribute
values in the articles (see Section 5.1.2).

Disambiguation. The adapted LEILA produces pattern occurrences with
wics. Each wic can have several meanings. LEILA produces a disambiguation
prior for each wic. There are numerous approaches for estimating the disam-
biguation prior.10 For our experiments, we use a particularly simple estimation,
which is known as the bag of words approach. It is described in Algorithm 4.

Algorithm 4: Compute Disambiguation Prior
Input: Wic w@d

Ontology o
Output:Textual facts
1 context(d) := set of words in d
2 e1, ..., en := possible meanings of w in o
3 FOR i = 1 TO n
4 context(ei) := set of entities connected to ei in o
5 FOR i = 1 TO n

6 p := context(d)∩context(ei)∑
j context(d)∩context(ej)

7 output disambPrior(w@d, ei, p)[1]

The algorithm takes as input a wic of a word w in a document d. It also requires
an ontology o. The algorithm first considers the set of words in the document d.
This set is called context(d) (line 1). Then, the algorithm looks up all possible
meanings of w in the ontology (line 2; in YAGO this can be done by following
the means edges from w). For each meaning ei, the algorithm computes the set
of entities connected to ei in the ontology. This set is called context(ei) (line 4).
Then, the algorithm computes the disambiguation prior of a meaning ei as the
normalized size of the intersection of context(ei) and context(d) (line 6). This
value increases with the amount of evidence that is present in d for the meaning
ei. By the normalization, we obtain a probability distribution over the possible
meanings of w. Finally, the algorithm outputs the resulting textual facts (line
7).

We made the experience that the top 3 disambiguation priors are usually
sufficient. We observe that a full disambiguation is not always necessary: First,
all literals in the document are already normalized. Hence, they always refer

10See [3] for a comprehensive overview.
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to themselves. Second, some words have only one meaning. For these tokens,
LEILA produces no disambiguation prior. Instead, it produces pattern occur-
rences that contain the respective entity directly in place of the wic. The relation
disambiguateAs is configured in such a way that each entity is mapped to itself.
Algorithm 5 summarizes the complete adapted LEILA algorithm.

Algorithm 5: Adapted LEILA
Input: Document d

Ontology o
Maximal pattern size k
Flag sesquiary ∈ {0, 1}
Entity e if sesquiary= 1

Output:Textual facts
1 IF sesquiary = 0 THEN Find Patterns (Alg. 2) with d, k
2 ELSE Find Sesquiary Patterns (Alg. 3) with d, o, e, k
3 FOR EACH wic w@d that has been produced
4 Compute Disambiguation Prior (Alg. 4) with w, d, o

5.3.2 Weighted MAX SAT Algorithm

Prior Assignments. In our weighted MAX SAT problem, we have vari-
ables that correspond to hypotheses (such as developed(Microsoft, JavaPro-
grammingLanguage)) and variables that correspond to facts (namely ontological
facts and textual facts). A solution to the weighted MAX SAT problem should
assign the truth value 1 to all facts. Therefore, we assign the value 1 to all
textual facts and all ontological facts a priori. This assumes that the ontology
is consistent with the rules. In case of YAGO, this is given by the construction
methods (see Section 3.2.2). Furthermore, we will assume that the ontology
is complete on the type and means facts. In case of YAGO, this assumption
is acceptable, because all entities in YAGO have type and means relations. If
type and means are fixed, this allows certain simplifications, such as an a priori
computation of the disambiguation prior (as explained in the previous section).
This leaves us with a partial assignment, which already assigns truth values to
a large number of statements.

Approximation. The weighted MAX SAT problem is NP-hard [63]11. This
means that it is impractical to find an optimal solution for large instances of
the problem, as it is the case in our setting. Some special cases of the weighted
MAX SAT problem can be solved in polynomial time [78, 110]. However, none
of them applies in our setting. Hence, we resort to using an approximation
algorithm. An approximation algorithm for the weighted MAX SAT problem is
an algorithm that, given a weighted MAX SAT problem, produces an assignment

11The original SAT problem is not NP-hard if there are at most two literals per clause. The
weighted and unweighted MAX SAT problems, however, are NP-hard even when each clause
has no more than two literals.
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for its variables that is not necessarily an (optimal) solution. The quality of that
assignment is assessed by the approximation ratio:

Definition 25: [Approximation Ratio of an Assignment ]
Given a weighted MAX SAT problem in the form of a set X of variables and a
set C of weighted clauses, and given a solution vo, the approximation ratio of
another assignment v for X is the ratio

∑

c ∈ C
c satisfied in v

w(c) /
∑

c ∈ C
c satisfied in vo

w(c)

An algorithm for the weighted MAX SAT problem is said to have an approxi-
mation guarantee of r ∈ [0, 1], if its output has an approximation ratio greater
than or equal to r for all weighted MAX SAT problems. Many algorithms have
only a weak approximation guarantee, but perform better in practice.

Approximation Algorithms. The weighted MAX SAT problem is an active
area of research and numerous approximate algorithms have been proposed.12 In
some special cases of the weighted MAX SAT problem, the optimal solution can
be approximated with a high approximation guarantee [140, 58]. However, our
case is again too general. Out of the vast array of available methods, we focus
on greedy algorithms here. This choice has two reasons: First, these methods
are extremely simple and run in linear or quadratic time (in the total size of the
clauses). Second, they will allow us to incorporate a resolution-like strategy in
a straightforward way.

Greedy Algorithms. We call an algorithm greedy, if it assigns the variables
incrementally without ever undoing its decision. One of the most prominent
greedy algorithms is Johnson’s Algorithm [80]. It is particularly simple and
has been shown to have an approximation guarantee of 2/3 [36]. However, the
algorithm cannot produce assignments with an approximation ratio greater than
2/3 if the problem has the following shape [156]: For some integer k, the set of
variables is X = {x1, . . . , x3k} and the set of clauses is

x3i+1 ∨ x3i+2

x3i+1 ∨ x3i+3

¬x3i+1 for i = 1, . . . , k

This, however, is exactly the shape of clauses induced by the rule for functional
relations (in negation, see Section 5.2.2). This means that Johnson’s Algorithm
cannot solve SOFIE’s weighted MAX SAT problem optimally, if instances of
functional relations appear. Since already the relation disambiguatedAs falls
into this category, Johnson’s Algorithm is less well suited for our problem.
Hence, we consider a different greedy algorithm here.

FMS Algorithm. We introduce the Functional Max Sat Algorithm here, which
is aimed at clauses induced by functional relations. The algorithm uses unit
clauses:

12See [14] for a survey.
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Definition 26: [Unit Clause]
Given a set of variables X , a partial assignment v on X and a set of clauses C
on X , a unit clause is a clause c ∈ C that is not satisfied in v and that contains
exactly one unassigned literal.

Strictly speaking, a unit clause is only defined with respect to an assignment.
To simplify, we will occasionally not mention the assignment explicitly, when
the assignment is clear from the context. Intuitively speaking, unit clauses are
the clauses whose satisfaction in the current partial assignment depends only
on one single variable. Our algorithm uses them as follows:

Algorithm 6: Functional Max Sat (FMS)
Input: Set of variables X

Set of weighted clauses C
Output:Assignment v for X
1 v := the empty assignment
2 FOR EACH x ∈ X
3 m0(x) :=

∑ { w(c) | c ∈ C unit clause, x ∈ c0}
4 m1(x) :=

∑ { w(c) | c ∈ C unit clause, x ∈ c1}
5 Q := priority queue of all x ∈ X ,

ordered by descending |m1(x)−m0(x)|
6 WHILE Q is not empty
7 x∗ := Q.dequeue()
8 v(x∗) = [m1(x∗) > m0(x∗)]
9 FOR EACH unassigned x s.t. ∃ C ∈ C : x∗ ∈ C, x ∈ C
10 recompute m0(x),m1(x), update priorities in Q

The algorithm takes as input a set of of variables X and a set of weighted clauses
C. In order to assign a truth value to a variable x, the algorithm considers only
the unit clauses in which x appears. It computes for each variable x the sum
of the weights of the unit clauses in which x appears with negative polarity
(m0(x), line 3). Analogously, it computes the weights of the unit clauses in
which x appears positive (m1(x), line 4). In case there are no unit clauses
with x, both m0(x) and m1(x) are zero. In the loop (lines 6-10), the algorithm
always picks the variable x that exhibits the largest difference of m0(x) and
m1(x), breaking ties arbitrarily (line 7). In case there are no unit clauses at
all, m0(x) = m1(x) = 0 for all x ∈ Q. In this case, an arbitrary variable
x is dequeued from Q. If m1(x) > m0(x), x is assigned the truth value 1.
Else x is assigned the truth value 0 (line 8). After the assignment, the unit
clauses in which x appeared are no longer unit clauses. However, new unit
clauses might have sprung up. Hence, all variables affected by the assignment
of x (line 9) have their values m0(x) and m1(x) recomputed. This changes
their priority in the priority queue Q, so Q has to be updated (line 10). This
procedure is iterated until all variables are assigned (lines 6-10). Assuming
that all operations on the priority queue run in logarithmic time, the algorithm
runs in time O(n · m · k · log(n)), where n is the total number of variables in
the clauses, k is the maximum number of variables per clause and m is the
maximum number of appearances of a variable. We prove in the Appendix B.4
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that the FMS Algorithm has an approximation guarantee of 1/2:

Theorem 4: [Approximation Guarantee of the FMS Algorithm]
Independent of the order in which the variables are assigned, the FMS Algo-
rithm has an approximation guarantee of 1/2.

One might be tempted to construct a similar greedy algorithm that simply
assigns the truth value t to a variable x, if the weight of unsatisfied clauses
where x appears with polarity t exceeds the weight of unsatisfied clauses where
x appears with polarity ¬t. We call this algorithm the Simple Algorithm and
discuss it in Appendix B.5. In summary, it would have difficulties with the
clauses in the SOFIE setting.

DUC Propagation. Once the FMS Algorithm has assigned a single variable,
the truth value of others might be implied by necessity. These variables are
called safe:

Definition 27: [Safe Variable]
Given a set of variables X , a partial assignment v on X and a weighted set of
clauses C on X , an unassigned variable x ∈ X is called safe, if there exists a
truth value t ∈ {0, 1} such that the weight of all unit clauses where x appears
with polarity p is larger than the weight of all unsatisfied clauses in which x
appears with polarity ¬p:

∑

c unit clause in v
x ∈ cp

w(c) ≥
∑

c unsatisfied clause in v
x ∈ c¬p

w(c)

p is called the safe truth value of x.

The following theorem [101, 152] says that safe variables can be assigned their
safe truth value without changing the weight of the best solution that can still
be obtained:

Theorem 5: [Safe Truth Values are Safe]
Let X be a set of variables, let v be a partial assignment on X and let C be a
weighted set of clauses. Let x be a safe variable with safe truth value t. Let
vo ⊇ v be an assignment that extends v and maximizes the sum of the weights
of the satisfied clauses. Let v′o be a variant of vo that assigns t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}

Then ∑

c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

We provide a proof in Appendix B.6. Theorem 5 gives rise to the technique of
Dominating Unit Clause Propagation:
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Algorithm 7: DUC Propagation
Input: Set of variables X

Set of weighted clauses C
Partial assignment v for X

Output:Modified v
1 WHILE there exists a safe variable x ∈ X
2 v(x) := safe truth value for x

Assigning one safe variable can create new unit clauses, which can give rise to
new safe variables. Theorem 5 ensures that the safe variables can be assigned in
any order without worsening the best solution that can still be achieved.13 In
particular, the theorem ensures that if a partial assignment is part of an optimal
solution, the enlarged assignment produced by the DUC Propagation will still
be part of an optimal solution. Unlike the FMS Algorithm, however, DUC
propagation does not necessarily produce a total assignment. Some variables
may be left unassigned.

FMS Algorithm and DUC Propagation. We combine the FMS Algorithm
with DUC propagation by calling the DUC propagation after each assignment
(Algorithm 8).

Algorithm 8: FMS∗

Input: Set of variables X
Set of weighted clauses C

Output:Assignment v for X
1 Run Functional MAX SAT (Alg. 6) with X , C
2 After each assignment (line 8 in Functional MAX SAT):
3 Run DUC Propagation (Alg. 7) with X , C, v
4 Remove assigned variables from Q

We prove in Appendix B.7 that this modification does not change the approxi-
mation guarantee of the algorithm:

Theorem 6: [Approximation Guarantee of the FMS∗ Algorithm]
The FMS∗ Algorithm has an approximation guarantee of 1/2.

The approximation guarantee does not improve over the approximation guar-
antee of the FMS Algorithm, because the presence of safe variables cannot be
assumed in general.

Generating Clauses. Our algorithm works on a database representation of
YAGO (see Section 3.2.3). The hypotheses and the textual facts are stored in
the database as well. Since our weighted MAX SAT problem will be huge, we
refrain from generating all clauses explicitly. Rather, we devised an algorithm

13DUC Propagation subsumes the techniques of unit propagation and pure literal elimina-
tion employed by the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [48] for the SAT
problem.
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that, given a statement s, generates all clauses in which s appears on the fly.
This procedure is given in Algorithm 9.

Algorithm 9: Generate Clauses
Input: Set of rules R

Set of statements S
Statement s ∈ S
Partial assignment v on S

Output: Set of weighted clauses C(s)
Modified set S

1 C(s) := ∅
2 FOR EACH rule r ∈ R
3 FOR EACH literal l ∈ r
4 IF s is not an instance of l THEN CONTINUE FOR
5 σ := substitution s.t. σ(l) = s
6 toDo := list of literals in R without l
7 IF l positive THEN addClauses(toDo, σ, (s), C(s))
8 ELSE addClauses(toDo, σ, (¬s), C(s))
9 C(s) := C(s) ∪ {(¬s)}
10 Define w(c) for all c ∈ C(s)

METHOD addClauses(toDo, σ, c, modifiable C)
1 IF toDo = ∅ THEN
2 C := C ∪ {c}
3 RETURN
4 l′ := toDo.first()
5 IF σ(l′) is a statement ∧ σ(l′) 6∈ S THEN S := S ∪ {σ(l′)[?]}
6 FOR EACH s′ ∈ S, s′ instance of σ(l)
7 IF v(s′) = 1 ∧ l′ positive ∨

v(s′) = 0 ∧ l′ negative THEN CONTINUE FOR
8 IF v(s′) undefined THEN
9 IF l′ positive THEN c′ := c ∨ s′

10 ELSE c′ := c ∨ ¬s′

11 ELSE c′ := c
12 σ′ := substitution s.t. σ′(l′) = s′

13 addClauses(toDo \ l′, σ ∪ σ′, c′, C)

The algorithm takes as input a set of rules R (see Section 5.2.2), a modifiable
set of statements S, a statement s and a partial assignment v. The algorithm
will return all clauses constructed from R that contain s. Furthermore, the
algorithm will generate all statements that appear in these clauses, but are not
yet in S. First, the algorithm checks all literals in all rules (lines 2-3). If s
is a ground instance of a literal l in a rule (line 4), the algorithm constructs
the substitution for the placeholders in l that is necessary to match s (line 5).
Next, the algorithm gathers the other literals in the rule (line 6). The algorithm
sorts the literals, so that literals with disambPrior and patternOcc come first.
If the literal l appeared positive in the rule (i.e., un-negated to the right-hand-
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side of ’⇒’), the method addClauses is called with an initial clause of (s) (else
with (¬s), lines 7-8). The method addClauses will find all possible instances
of all literals in toDo, construct the appropriate clauses and add them to C.
For this purpose, the method traverses the toDo list of literals, calling itself
recursively on each literal. With each recursive call, the substitution σ grows,
the tentative clause c grows and the list toDo shrinks. The method picks the
first literal l′ from toDo (line 4). In some cases, the substitution σ already binds
all placeholders in the literal. In this case, σ(l′) is added to the set of statements
S (line 5). Next, all instances of l′ are considered. If an instance satisfies the
clause in the current partial assignment, the clause can be ignored (line 7). If
the instance has already been assigned, it can be left out of the generated clause
(line 11). If the instance is unassigned, it is added to the clause (lines 9-10).
Then, the method computes the new placeholder bindings σ′ (line 12) and calls
itself recursively (line 13). Once a clause is complete, it is added to C (line 2).
After all clauses have been generated, it remains to add Ockham’s rule (line
9) and to compute the weights for all clauses (line 10), as described in Section
5.2.3.

The virtual relations (see Section 2.2.8) can be evaluated on the fly while
the clauses are being constructed (in line 7). This also applies to hypotheses of
the form type(x, y), where x is a literal and y is a class. These hypotheses are
handled as follows: We associate with each literal data type (see Section 2.2.4)
a regular expression that determines whether a string can be an instance of that
data type. Whenever a hypothesis has the form type(x, y) with y being a literal
data type, we check whether x matches the regular expression of y. This allows
evaluating this type of hypotheses on the fly. YAGO itself does not store facts
of this form.

Final Algorithm. We will now put Algorithm 9 and Algorithm 8 together to
obtain Algorithm 10, which is used to compute truth values for the hypotheses.

Algorithm 10: Compute True Hypotheses
Input: Set of rules R

Set of facts F
Output: Set of statements S

Assignment v on S
1 S := copy of F
2 FOR EACH disambPrior(wic, e, z) ∈ F
3 S := S ∪ {disambiguatedAs(wic, e)[?]}
4 FOR EACH pattern p appearing in F
5 FOR EACH relation r appearing in F
6 Generate clauses (Alg. 9) with R,S, expresses(p, r), ∅
7 Run FMS∗ (Alg. 8) with S
8 using Clause Generation (Alg. 9) to generate clauses when needed

The algorithm takes as input a set F of textual and ontological facts and a set R
of rules. We take the rules defined in Section 5.2.2. The algorithm produces a set



5.3. SOFIE: Implementation 113

of statements S and an assignment v for them. The algorithm first constructs the
set S of statements. These consist first just of the given facts F (line 1). Then,
the algorithm aims to add all hypotheses of the form disambiguatedAs(wic, e).
From inspecting R, it can be seen that such a hypothesis can only be deduced
in R if there is a corresponding textual fact disambPrior(wic, e, z) in F . Hence,
the disambiguatedAs hypotheses can be generated in a simple loop (lines 2-3).
Then, the algorithm sets out to generate the other hypotheses. A rule can only
make a hypothesis true if the literal occurs positive on the right-hand-side of
’⇒’. All rules that have a positive literal on the right-hand-side of ’⇒’ have
on the left-hand-side textual literals, literals with disambiguatedAs, and literals
with expresses. Once the left-hand-side literals are grounded, the right-hand-
side literal is grounded as well. Since we have in S already all instances of
textual facts and all hypotheses with the relation disambiguatedAs, it suffices
to traverse all possible instances of literals with the relation expresses in order
to generate all possible hypotheses.14 This is what the algorithm does in lines
4-6. Algorithm 9 makes sure that all hypotheses are added to S. Once S is
complete, it remains to call the FMS∗ Algorithm on them (lines 7-8).

5.3.3 SOFIE Algorithm

SOFIE Algorithm. We combine the adapted LEILA (Algorithm 5) and the
computation of true hypotheses (Algorithm 10) as follows:

Algorithm 11: SOFIE
Input: Set of rules R

Set of facts F
Set documents D

Output: Set of statements S
Assignment v on S

1 Run Adapted LEILA (Alg. 5) with D and some fixed pattern size k
producing textual facts F ′

2 Compute True Hypotheses (Alg. 10) with R,F ∪ F ′

The algorithm takes as input a set of rules. We use the rules defined in Section
5.2.2. Furthermore, the algorithm requires a set of facts. These are the facts
from the ontology that is to be extended. Last, the algorithm also requires
a given set of documents. The algorithm parses the documents and produces
textual facts (F ′). Based on the ontological and the textual facts, the algorithm
engenders hypotheses and computes their truth values.

Afterwards, the true hypotheses can be accepted as new members of the on-
tology. This applies primarily to new ontological facts (i.e., facts with relations
such as bornOnDate). Going beyond the ontological facts, it is also possible to
include the new expresses facts in the ontology. Thus, the ontology would store
which pattern expresses which relation. Now suppose that, later, SOFIE is run

14If there were rules that contain positive literals, but no literals with the relation expresses,
then this part of the algorithm would have to be adjusted.
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on a different corpus. Since the SOFIE algorithm assigns the truth value 1 to
all facts from the ontology, the later run of SOFIE would adopt the expresses
facts from the previous run. This way, SOFIE can already build on the known
patterns when it analyzes a new corpus.

5.4 Experiments

We evaluated SOFIE in two settings. One setting is the extraction of informa-
tion from semi-structured text in the form of Wikipedia. The second setting
has the goal of extracting information from Web documents. Last, we also com-
pared different algorithms for solving the weighted MAX SAT problem. All
experiments with SOFIE were run with YAGO as the background ontology and
with the rules from Section 5.2.2, unless otherwise noted. For all experiments,
we used the weight W = 100 for the inviolable rules, w = 1 for the violable rules
and ε = 0.1 for Ockham’s Razor (see Section 5.2.3). The experiments were run
on a standard desktop machine with a 3GHz CPU and 3.5GB RAM. We used
the PostgreSQL Database system.

5.4.1 Information Extraction from Semi-Structured Text

SOFIE shall extract information from both natural language text and semi-
structured text. In this section, we study the performance of SOFIE on semi-
structured text. We use Wikipedia as a canonical sample corpus. We ran
two types of experiments. One type of experiments studies the performance
of SOFIE under controlled conditions. The other experiment is a large scale
experiment on random Wikipedia articles.

5.4.1.1 Controlled Experiments

Setting

Corpus. We are interested in the performance of SOFIE with different pattern
types (sesquiary and binary) and with different degrees of structure in the cor-
pus. We chose the domain of newspapers. This choice has 3 reasons. First, the
newspaper articles all have infoboxes. This allows us to vary the proportion of
articles that have infoboxes – simply by cutting out the infoboxes from some
articles. Second, we can learn relations on this domain that YAGO does not
know (such as newspaperHasLanguage). This allows us to control the amount
of background knowledge from the ontology. Last, some of the articles have
categories that can be exploited by SOFIE in addition to the infoboxes. We
created a corpus of 100 random Wikipedia articles about newspapers.

Background Knowledge. We decided for the relations hasLanguage,
ownedBy and newspaperFoundedOnDate, which are not present in YAGO. This
allows us to control the amount of training samples that SOFIE can use. All
three relations have corresponding entries in the infoboxes. YAGO knows all
newspapers in our corpus. YAGO does not know the language of the newspa-
pers, their foundation date or their owner, but it contains the respective entities.
For each relation, we added 10 instances as seed pairs to YAGO.
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Metrics. To evaluate the performance of SOFIE, the output has to be com-
pared to some ground truth. To establish this ground truth, we manually ex-
tracted all facts with the relations hasLanguage, ownedBy and foundedOnDate
from the articles. For each fact, we noted whether it can be found in the infobox
or whether the article text has to be considered. We use the standard precision
and recall metrics. For a given relation r, let Or be the set of facts with relation
r that have been extracted by SOFIE. Let Gr be the set of ground truth facts
with relation r. Then, the precision measures the proportion of the output facts
that appear in the ground truth:

prec(Or, Gr) :=
|Or ∩Gr|
|Or|

Conversely, recall measures the proportion of the ground truth facts that have
been found by the system:

rec(Or, Gr) :=
|Or ∩Gr|
|Gr|

Experiments

Experiment 1. We were interested in how SOFIE copes with information in
the form of notes. By this, we mean table-like information about an entity, such
as

John Lennon
Born in: Liverpool
Genre: Rock
...

This form of data is a very common scheme in semi-structured texts. Consider,
for example, tabular information in a curriculum vitae or a table listing the
properties of a digital camera. The Wikipedia infoboxes provide one instanti-
ation of this scheme, in which each line contains information about the article
entity without mentioning it again. Hence, the infoboxes form a good test case
for our sesquiary patterns. We first ran SOFIE only on the note-like part of our
corpus (i.e., only on the infoboxes). Table 13 shows the processing time.

Table 13: Processing time of the Newspaper Corpus (1a)
Process Time
Parsing 1 min
Hypothesis generation 17 sec (2,519 hypotheses)
FMS∗ 1 min
Total 2 min

We compared the output of SOFIE to the ground truth that we extracted man-
ually from the infoboxes. Table 14 shows the results per relation, excluding the
seed pairs.



116 5.4. SOFIE: Experiments

Table 14: Results on the Newspaper Corpus (1a)
Relation # Ground # Output # Correct Precision Recall

truth pairs pairs pairs
foundedOnDate 87 87 87 100% 100%
hasLanguage 25 25 25 100% 100%
ownedBy 57 53 53 100% 94.44%

As expected, SOFIE quickly finds the infobox attributes that correspond to
the target relation. SOFIE finds, for example, that the pattern “owner =” in
the infoboxes identifies the owner of a newspaper. This gives SOFIE a trivial
precision and recall of nearly 100%. The missing values are due to parsing
problems or because the target entity was not known under the given name
to YAGO. This shows that SOFIE’s model can deal in principle with semi-
structured text in the form of tables. No corpus-specific adjustments of the
rules or the algorithm are necessary. The accuracy of SOFIE is as high as that
of specialized techniques for HTML or XML tables.

The problem becomes more interesting, if the articles contain both a struc-
tured part and an unstructured part. Hence, we ran SOFIE also on the complete
corpus. Table 15 shows the processing times.

Table 15: Processing time for the Newspaper Corpus (1b)
Process Time
Parsing 3 min
Hypothesis generation 2 min (14,078 hypotheses)
FMS∗ 19 min
Total 24 min

Again, we evaluated SOFIE manually, this time with respect to the information
in the infoboxes and the articles. Table 16 shows our results.

Table 16: Results on the Newspaper Corpus (1b)
Relation # Ground # Output # Correct Precision Recall

truth pairs pairs pairs
foundedOnDate 89 41 37 90.24% 41.57%
hasLanguage 45 25 25 100% 55.55%
ownedBy 57 29 26 89.65% 45.61%

In comparison to the previous experiment, precision and recall are lower. This
is due to two reasons. First, SOFIE gets distracted by the patterns in the
non-infobox text. If a pattern in the infobox identifies the correct entity, but
the entity appears with another, useless pattern in the article text, SOFIE is
less likely to accept the correct entity. Second, the number of ground truth
pairs is higher, covering also the ground truth found in the article text. SOFIE
finds sesquiary patterns also in the article text (such as “was launched on X”).
These patterns, however, sometimes also apply to other entities. For example,
the pattern “was launched on X” appeared in the sentence “An Irish version
of the paper was launched on 6 February, 2006”. SOFIE did not notice that
the sentence does not talk about the article entity. This lowers the precision of
SOFIE. Still, the values are quite good.

In summary, we have seen that sesquiary patterns can extract facts from
documents that contain information in note form or table form. This shows that
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the framework of SOFIE is not limited to binary patterns. Sesquiary patterns,
however, produce worse results if the document contains both unstructured and
semi-structured text.

Experiment 2. If one aims for optimal performance in the special case of
Wikipedia, it appears reasonable to use binary patterns. This is because the
tokenization with binary patterns can be adapted to Wikipedia (see Section
5.3.1). Hence, we ran SOFIE with binary patterns on our corpus. Table 17
shows the processing time.

Table 17: Processing time for the Newspaper Corpus (2)
Process Time
Parsing 3 min
Hypothesis generation 1 min (8,422 hypotheses)
FMS∗ 4 min
Total 8 min

Again, we evaluated the output of SOFIE manually with respect to the ground
truth in the infoboxes and the article text. Table 18 shows our results per
relation.

Table 18: Results on the Newspaper Corpus (2)
Relation # Ground # Output # Correct Precision Recall

truth pairs pairs pairs
foundedOnDate 89 87 87 100% 97.75%
hasLanguage 45 29 28 96.55% 62.22%
ownedBy 57 49 49 100% 85.96%

We observe that recall and precision increase slightly with respect to the experi-
ments with the sesquiary patterns. This is due to the tokenization of Wikipedia,
which inserts the article entity before each infobox attribute. This way, the bi-
nary patterns can make full use of the infobox attributes. At the same time,
they are less likely than sesquiary patterns to fall prey to sentences about other
entities. The binary patterns find all facts from the infoboxes. In addition, they
find some facts from the article text, but not all (e.g., for hasLanguage). The
binary patterns allow SOFIE to do part of the work that is done by the YAGO
extractors: For given seed pairs, SOFIE identifies the corresponding infobox at-
tributes. It finds the values of the attributes, type checks them and adds them
to the ontology. As our results show, SOFIE can achieve a precision that is
similar to the precision of our manually designed infobox harvesting methods
(see Section 3.2.1.1).

Experiment 3. We have seen that SOFIE can work on semi-structured text
in the form of infoboxes. Even more challenging than the extraction from in-
foboxes and article text is the extraction from the article text alone. To test
the performance of SOFIE without infoboxes, we removed the infoboxes from
half of the documents. Mimicking the content of YAGO, we chose our seed
pairs from the portion of articles that did have infoboxes. We ran SOFIE and
re-evaluated its output, again discounting seed pairs. Table 19 shows the results
of our evaluation.
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Table 19: Results on the Newspaper Corpus (3)
Relation # Ground # Output # Correct Precision Recall

truth pairs pairs pairs
foundedOnDate 89 78 77 98.71% 86.51%
hasLanguage 45 18 18 100.00% 40.00%
ownedBy 57 26 26 100% 45.76%

As can be seen from the results, the recall is much lower if the infoboxes are not
present. Still, SOFIE manages to find information also in the articles without
infoboxes. This is because SOFIE finds the category “Newspapers established
in...”. This category indicates the year in which the newspaper was founded.
Interestingly, this category did not occur in our seed pairs for foundedOnDate.
Thus, SOFIE had no clue about the quality of this pattern. By help of the in-
foboxes, however, SOFIE could establish a large number of instances of founde-
dOnDate. Since many of these had the category “Newspapers established in...”,
SOFIE accepted also the category pattern “Newspapers established in X” as
a good pattern for the relation foundedOnDate. In other words, newly found
instances of the target relation induced the acceptance of new patterns, which
in turn produced new instances. This principle is very close to what has been
proposed for DIPRE [22] and Snowball [2]. However, in contrast to such prior
work, SOFIE achieves this effect without any special consideration, simply by
its principle of including patterns and hypotheses in its reasoning model.

Discussion. We have seen that SOFIE can cope well with semi-structured text
in Wikipedia. It would be desirable if SOFIE could extract more information
from the article text. In the ideal case, SOFIE could extract the informa-
tion solely from the article text, thus abandoning the dependence on infoboxes.
Then, SOFIE would perform a task similar to the task performed by KYLIN
[150]. Up to now, however, the performance of SOFIE on this task trails be-
hind the performance of KYLIN, which has a recall of over 90%. This is because
KYLIN is heavily tuned and tailored to Wikipedia, whereas SOFIE is a general-
purpose information extractor.

5.4.1.2 Large-Scale Experiment

Corpus. To evaluate SOFIE’s performance on semi-structured text on a larger
scale, we tested SOFIE on a random set of Wikipedia articles. We created a
corpus of 1000 randomly selected Wikipedia articles. We took care that each
article was at least 10 kB large (discounting images). We chose 14 relations that
are frequent in YAGO. We also added a rule saying that the birth date and the
death date of a person shall not have a difference of more than 100 years. Then
we ran SOFIE. Table 20 shows the processing time.

Table 20: Processing time for the Wikipedia Corpus
Process Time
Parsing 1:14 hours
Hypothesis generation 3:53 hours (920,090 hypotheses)
FMS∗ 1:16 hours
Total 6:13 hours
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We evaluated SOFIE manually. Because of the size of the corpus, we could not
establish the full set of ground truth facts. Therefore, we report only precision
numbers and cannot give any recall values. SOFIE sometimes extracted birth
years for people who already have precise birth dates in YAGO. These facts
are correct output facts. However, to make our evaluation as conservative as
possible, we discounted these pairs in the evaluation. Table 21 shows the results
of our evaluation.

Table 21: Results on the Wikipedia Corpus
Relation # Output # Correct Precision

pairs pairs
actedIn 4 4 100%
bornIn 58 41 70.69%
bornOnDate 87 86 98.85%
diedOnDate 21 21 100%
directed 7 5 71.43%
establishedOnDate 16 14 87.50%
hasDuration 2 2 100%
hasPopulation 3 3 100%
hasProductionLanguage 3 3 100%
locatedIn 69 56 81.16%
writtenInYear 3 3 100%
hasArea 0 0
hasUtcOffset 0 0
hasArea 0 0
Total 273 238 87.18%

The evaluation shows good results. However, the precision values are worse
than in the small-scale experiment. This is due to the thematic diversity in our
corpus. The documents comprised articles about people, cities, movies, books
and programming languages. Our relations, in contrast, mostly apply only
to one single type. For example, bornOnDate applies exclusively to people.
Thus, the chances for examples and counterexamples for each single relation are
lowered. Still, the precision values are very good. One major problem is the
bornIn relation. For this relation, SOFIE found the category pattern “People
from X”. In most cases, this category indeed identifies the birth place of people.
In some cases, however, the category tells where people spent their childhood.
This misleads SOFIE. Table 22 shows some patterns.

The patterns are of 3 types: There are text patterns, such as “X was born in
Y ”. These have been found in the article text. The second type of patterns are
category patterns, such as “X CAT ¦ from Y ”. These have been found because
the tokenizer inserts the article entity (X) before the category string (starting
with “CAT”). The symbol “¦” has been inserted to replace an uppercase word.
This way, the pattern matches the string “People from Y ” as well as “Scientists
from Y ” (see again Algorithm 5.3.1 for the pattern extraction). The third class
of patterns has been derived from infoboxes. For example, the pattern “X
goldenglobeawards = ¦ Y ” refers to a line in the infobox saying that the article
entity (X, inserted by the tokenizer) has won a prize (replaced by “¦” in the
pattern) for a movie Y .
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Table 22: Some Patterns in the Wikipedia Corpus
Pattern Relation
“X was born in Y ” bornIn
“X CAT ¦ from Y ” bornIn
“X goldenglobeawards = ¦ Y ” actedIn
“X was born on Y ” bornOnDate
“X was assassinated in Y ” diedOnDate
“X ( b: Y ” bornOnDate
“X’s film Y ” directed
“X CAT ¦ established in Y ” establishedOnDate
“X, a Y ” hasProductionLanguage
“X, who received the Y ” hasWonPrize
“X is a town in Y ” locatedIn
“X, published in Y ” writtenInYear

Discussion. SOFIE has extracted and validated a multitude of patterns in
Wikipedia. The patterns stemmed from the article text, the categories and the
infoboxes. Thereby, SOFIE harvested both the structured and the unstructured
part of Wikipedia. Our evaluation shows good, although not perfect precision
values. The thematic diversity of the corpus has made it difficult for SOFIE
to find consistent patterns with examples and counterexamples. SOFIE still
works better on topic-wise homogeneous corpora, such as the one we analyzed
in the preceding section. A larger corpus could also alleviate the problem,
giving SOFIE more examples and counterexamples for specific relations. We
will analyze large scale corpus performance on unstructured documents in the
following section.

5.4.2 Information Extraction from Web Documents

SOFIE aims at understanding natural language text. To test SOFIE’s per-
formance on real-world, unstructured text, we conducted two types of experi-
ments. In the first type of experiments, we limited the background knowledge
contributed by YAGO. In the second type of experiment, we tested SOFIE on
a large scale on documents downloaded from the Internet.

5.4.2.1 Controlled Experiments

Setting

Corpus. Through its unifying framework, SOFIE performs three tasks at the
same time: disambiguation, pattern identification and logical reasoning. To
study the performance on these tasks in detail, we ran SOFIE on a small corpus
under controlled conditions. We opted for the corpus of newspaper articles,
which we already used for the evaluation of LEILA in Section 4.3. This corpus
targets the headquarters relation, which holds between an organization and the
city of its headquarters. The choice for this corpus has 3 reasons. First, YAGO
does not know the headquarters relation. This allows us to control the amount
of samples that are available to learn the relation. Second, the corpus is of
particular finesse, as nearly all city names in the United States are ambiguous.
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For example, when the corpus contains a sentence saying that Microsoft is head-
quartered in Redmond, we expect SOFIE to decide correctly whether Microsoft
is headquartered in Redmond, Washington, or Redmond, Utah or Redmond,
Oregon. Last, the corpus allows us to compare the performance of SOFIE to a
prototypical standard Information Extraction system, the Snowball system [2].

In the original paper, Snowball was run on a collection of some thousand
documents. For a small portion of that corpus, the authors established the
ground truth manually. For copyright reasons, we only had access to this small
portion. It comprises 150 newspaper articles.

Background Knowledge. The performance of SOFIE depends not only on
the corpus, but also on the amount of background knowledge that is available
from the ontology. The less data the ontology provides, the worse SOFIE will
perform. For example, if the ontology does not know that a certain entity is
an organization, SOFIE cannot establish a headquarters fact for it. To exclude
the effect of the ontology, we manually added all organizations mentioned in
the articles to YAGO. These were 120 organizations, some of which were not
known to YAGO (or Wikipedia) before. Likewise, we added the few cities to
YAGO that did not already exist in the ontology. This gives us a clean starting
condition for our experiment, in which all failures are attributed solely to SOFIE
and not to the ontology. In the original paper, the Snowball system was given 5
seed pairs of an organization and a city. Since the original pairs did not appear
in our set of documents, we took 5 other pairs of an organization and a city and
added them to the ontology.

Ground Truth. SOFIE shall learn which organization is headquartered in
which city. To evaluate the performance of SOFIE, the results of SOFIE have
to be compared to some ground truth. The authors of [2] have already man-
ually compiled a ground truth table. It contains pairs of organizations and
cities. A pair of an organization and a city is included in the ground truth if
it becomes evident from an article that the organization is based in that city.
Note that the type of task covered by Snowball and SOFIE is different from
the type of task covered by the original LEILA. While LEILA aimed at extract-
ing all occurrences of an instance of the target relation, Snowball and SOFIE
aim at extracting the information itself, no matter how often it is mentioned
in the corpus. We have extended the original ground truth table to cover all
120 organizations mentioned in the articles. Unlike Snowball, SOFIE extracts
disambiguated entities. Hence, our ground truth has to be defined on disam-
biguated entities. Therefore, we disambiguated each name in the ground truth
manually.

Metric. In the original paper [2], Snowball is evaluated using the Ideal Met-
ric (see again Section 4.3). This metric assumes that the target relation is a
functional relation (as the headquarters relation is indeed). Given a set G of
ground truth pairs and a set O of output pairs, precision and recall under the
ideal metric are defined as follows:

recall =
|G ∩O|
|G|
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precision =
|G ∩O|

|{< e1, e2 >∈ O|∃e′2 :< e1, e′2 >∈ G}|
Note the non-standard definition of precision: Precision is not computed with
respect to the number of total output pairs |O|. Rather, it is computed with
respect to those output pairs that have a corresponding entry in the ground
truth. We call these pairs the relevant pairs. For example, if the ground truth
contains the pair Microsoft/Redmond, then any output pair having Microsoft
as its first argument is relevant. Any pair that contains an entity not mentioned
in the ground truth (say, the number 42) is irrelevant. By computing precision
only with respect to the relevant output pairs, this metric favors the system.

Evaluation. The output of SOFIE can be compared directly to the ground
truth. As in the original Snowball paper, we accept the US state as the head-
quarters of some organization, if the organization is headquartered in a city in
that state. The output of Snowball on the collection was provided for us by
the author, Eugene Agichtein. This allowed us to compare our results to the
best possible output of Snowball with the tuning done by the author. Snow-
ball produces one output pair for each occurrence of an organization and a
headquarters. These pairs may contain the same organization multiple times.
Among these pairs, the pair with the highest confidence score has to be chosen.
It is non-trivial to determine whether two output pairs of Snowball concern the
same organization. For example, do “Virgin Inc.” and “Virgin Corp.” refer to
the same company?15 In the original paper, this record linkage was done by au-
tomated means. Since we did not have these tools available, we did the record
linking manually. This yields one headquarters for each organization. The out-
put of Snowball is not canonicalized. That means that Snowball will produce the
headquarters “Redmond” without noting to which Redmond it refers. To give
Snowball the greatest possible advantage over SOFIE, we accepted any name of
the true headquarters entity as correct. Thus, we required no disambiguation
from Snowball, while we expected it from SOFIE.

Experiments

Experiment 1. To run SOFIE with minimal background knowledge, we first
ran it only with the isHeadquartersOf relation. This relation is the inverse
of the original relation headquarteredIn. The isHeadquartersOf relation is not
functional. Thus, SOFIE has no counterexamples. Table 23 shows the time
SOFIE needed to process the 150 documents (500kB).

Table 23: Processing time of the Snowball Corpus (1)
Process Time
Parsing 2 min
Hypothesis generation 22 min (719 hypotheses)
FMS∗ 20 sec
Total 25 min

15The task of determining whether two words refer to the same entity is different from the
task of disambiguation. The task of disambiguation considers only one single word (such as
“Redmond”) and seeks to identify the entity it refers to, out of a set of possible entities. For
this purpose, the disambiguation process needs to know the meanings of a word. This is not
necessary for the task described here.
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Table 24 shows the results of the evaluation.

Table 24: Results on the Snowball Corpus (1)
# Ground # Output # Rel. # Correct Precision Recall
truth pairs pairs pairs pairs (ideal)

Snowball 120 429 65 37 56.69% 30.89%
SOFIE 120 35 35 32 91.43% 24.32%

Snowball achieves a reasonable precision and recall. The numbers are in tune
with our findings in Section 4.3. They vary slightly because we have enlarged
the ground truth table. SOFIE achieves a lower recall than Snowball. However,
SOFIE achieves a much higher precision than Snowball – even though SOFIE
faced the additional task of disambiguation. In fact, the 3 cases where SOFIE
fails are difficult cases of disambiguation, where “Dublin” does not refer to the
Irish capital, but to a city in Ohio.

Experiment 2. Now, we wanted to see how semantic information influences
SOFIE. For this purpose, we added the original headquarteredIn relation, which
is the inverse relation of isHeadquartersOf. We added a rule stating that when-
ever X is the headquarters of Y , Y is headquartered in X. Furthermore, we
made headquarteredIn a functional relation, so that one organization is only
headquartered in one location. Table 25 shows the time SOFIE needed to pro-
cess the corpus with the additional rules.

Table 25: Processing time of the Snowball Corpus (2)
Process Time
Parsing 2 min (as before)
Hypothesis generation 27 min (1165 hypotheses)
FMS∗ 31 sec
Total 30 min

Table 26 shows the results of our evaluation.

Table 26: Results on the Snowball Corpus (2)
# Ground # Output # Rel. # Correct Precision Recall
truth pairs pairs pairs pairs (ideal)

SOFIE 120 46 46 42 91.30% 31.08%

Adding the inverse relation has allowed SOFIE to find patterns, in which the
organization precedes the headquarter (such as in “Microsoft, a Redmond-based
company”). This has increased recall to the level of Snowball’s recall. At the
same time, the functional constraint has kept SOFIE’s precision at the same
high level.

In summary, SOFIE achieves a YAGO-like precision of above 90 percent.
This is much higher than Snowball’s precision, even though Snowball was trained
on a much larger corpus. SOFIE cannot find all pairs of an organization and its
headquarters. However, in the inherent trade-off between precision and recall,
precision is usually valued more than recall for the purpose of ontology con-
struction. Given that SOFIE did not just extract pairs of names, but pairs of
disambiguated entities, SOFIE’s performance is remarkable.
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Discussion. In general, both systems have difficulties achieving a recall of
100%. In some cases, this is due to non-trivial wording. For example, one
article says that “Companies whose share rose include Danbury-based specialty
maker UCAR International Inc.”. In this sentence, the company (UCAR Inter-
national) and the headquarters (Danbury) appear separated by the words “spe-
cialty maker”, which are unlikely to appear in a pattern. Thus, SOFIE does not
find this instance. This problem can be addressed by linguistic processing, as is
done in LEILA. Sometimes, the documents express the relationship between an
organization and its headquarters only implicitly. For example, some news ar-
ticles are devoted to a single company (e.g., Sun Microsystems). They mention
the name of the company only once in the beginning of the article and refer to
it in the rest of the article as “the company” or “the software maker”. If the
headquarters is mentioned in some other place in the article, pattern matching
systems often have difficulties establishing the connection between the company
name and the headquarters name. This problem could be addressed in several
ways. If it is clear that the document is only about one company, then sesquiary
patterns or KYLIN’s strategy [150] could help. This, however, risks falling prey
to sentences about other entities, as we have seen in Section 5.4.1.1. In certain
cases, also a linguistic analysis can help. In particular, it might help to use
anaphora resolution and noun phrase resolution (i.e., finding the entity that a
common noun such as “the company” refers to in a certain context). LEILA
does this to a limited extent. It achieves a decent recall on the Snowball corpus
(see Section 4.3.2.2). In some cases, redundancy can help. If the information
cannot be extracted from one document, it can possibly be extracted from an-
other. This is the philosophy of the free scope systems discussed in Section
4.1.2. Redundancy, however, cannot always be assumed. In some cases, tem-
poral reasoning is necessary to figure out the headquarters of a company. For
example, one article states that “Safeway Inc. will move its headquarters to
Pleasanton in about four or five months.”. SOFIE cannot yet deal with this
type of information. The TOB system [159] makes advances in this direction.

5.4.2.2 Large Scale Experiment

Setting

Corpus. We wanted to see how SOFIE performs on a large set of unstructured
documents. To allow SOFIE to find coherent patterns, it is reasonable to choose
a thematic domain. We decided for the domain of biographies, because this
domain is particularly rich in factual information. There exist thousands of
biographies on the Web, but it is hard to gather them. Hence, we opted for
the group of US Senators (past and present). For US Senators, there exist
numerous biographies on the Web. We picked 400 US Senators at random from
YAGO. We used Google to retrieve 10 biographies for each senator (less, if
the pages could not be accessed or were not in HTML). We excluded pages
from Wikipedia. This resulted in 3440 HTML files. Extracting information
from these files is a particulary challenging endeavor, for several reasons. First,
the documents are arbitrary, unstructured documents from the Web. They
are structurally extremely heterogeneous, containing, for example, tables, lists,
advertisements, and occasionally also error messages. Some documents are not
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biographies at all; others are biographies of several people in one document.
Second, the disambiguation is particularly interesting. Many people mentioned
in the biographies have highly ambiguous names. For example, there was one
senator called James Watson, but YAGO knows 13 people with this name.
Worse, some biographies that we downloaded may not be about the intended
senator, but about another person with the same name. Thus, the ontological
information extraction faces a serious challenge concerning the disambiguation.

Relations. We wanted to extract the birth date and place of the senators, the
state in which they worked and the date and place of death (for those who died).
We added a rule saying that the birth date and the death date of a person shall
not have a difference of more than 100 years.

Experiment

Runtime. As explained in Section 5.3.3, we ran SOFIE in 5 batches of 20,000
pattern occurrences, keeping the true hypotheses and the patterns from the
previous iteration for the next one. Table 27 shows the runtime of SOFIE.

Table 27: Processing time of the Biography Corpus
Process Time (total) Avg. Time per Batch
Parsing 7 hours 1:25 hours
Hypothesis generation 6:15 hours 1:15 hours
FMS∗ 2:35 hours 31 min
Total 15:50 hours

Evaluation. We evaluated the results manually by checking each fact on
Wikipedia. By checking the fact in Wikipedia instead of in the original biogra-
phies, we could also see whether the entities have been disambiguated correctly.
This is because YAGO uses the entity identifiers from Wikipedia. Because of
the size of the corpus, we could not establish the full set of ground-truth facts.
Therefore, we only report precision values. SOFIE sometimes extracted birth
years for people who already have precise birth dates in YAGO. These facts are
correct output facts. However, to make our evaluation as conservative as possi-
ble, we discounted these pairs in the evaluation. Likewise, we discounted output
facts about birth years in the evaluation, if a more precise birth date was also
found. In 3 cases, we could not establish the ground truth at all. We discounted
these output facts as well. Table 28 shows the results of the evaluation.

Table 28: Results on the Biography Corpus
Relation # Output # Correct Precision

pairs pairs
politicianOf 339 ≈ 322 94.99%
bornOnDate 191 168 87.96%
bornIn 119 104 87.40%
diedOnDate 66 65 98.48%
diedIn 29 4 13.79%
Total 744 673 90.45%

For politicianOf, we evaluated only 200 facts, extrapolating the number of cor-
rect pairs and the precision accordingly. Our evaluation shows very good results.
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SOFIE did not only extract birth dates, but also birth places, death dates and
the states in which the people worked as politicians. Each of these facts comes
with its particular disambiguation problems. The place of birth, for example,
is often ambiguous, as many cities in the United States bear the same name.
Even the birth date may come with its particular difficulties if the name of the
person refers to multiple people. Thus, we can be extremely satisfied with our
precision values.

SOFIE could not establish the death places correctly, though. This is due
to two reasons. First, information on death places is sparse in YAGO, thus giv-
ing SOFIE fewer counterexamples. Second, the death place is rarely mentioned
with the full name of the person. Rather, it is often mentioned at the end of
a biography, referring to the person only by a pronoun or by the family name.
Currently, these references cannot be resolved by SOFIE. The other cases where
SOFIE fails are often difficult disambiguation cases or parsing problems. For
example, one document mentions the German writer Friedrich Heinrich Karl de
la Motte. SOFIE knows this writer only under the name of “Friedrich Hein-
rich Karl de la Motte Fouqué”. Hence, SOFIE assumes erroneously that Carl
Friedrich Heinrich Graf von Wylich und Lottum is meant instead, a Prussian
infantry general. In the majority of failures for birth dates, SOFIE assigns a
birth date to a person that is named by her or his profession. For example,
SOFIE claims that the Attorney General of India was born 1780-08-29. This is
not correct, because, from an ontological point of view, Attorney General of In-
dia is a profession and not a person. The noun phrase “the Attorney General of
India” can refer to multiple people over time. SOFIE mistakes the professions
for people because YAGO erroneously contains these professions as instances of
the class person. SOFIE finds plausible patterns in the documents. Table 29
lists some of them.

Table 29: Some Patterns in the Biography Corpus
Pattern Relation
“X was a ¦ from Y ” politicianOf
“X represented Y ” politicianOf
“X was born in Y ” bornIn
“X was born in Y ” bornOnDate
“X died on Y ” diedOnDate
“X ( b: Y ” bornOnDate
“X, of Y ” politicianOf
“X was born in Y ” diedIn

SOFIE finds natural patterns for birth and death dates. These include gram-
matical sentences and also non-grammatical patterns such as “( b:”. Note that
the pattern “X was born in Y ” can express both the birth date and the birth
place, depending on the type of Y . For politicianOf, SOFIE finds very general
patterns (such as “X, of Y ”). Without the type checking, these would lead
to a disastrous precision. By the type checks, however, it is made sure that X
is a person and Y is a US state. Under these conditions, the pattern indeed
identifies the state that the person represented. There were multiple erroneous
patterns for diedIn, such as “X was born in Y ”. All of them expressed the
birth place rather than the death place. This explains the dismal performance
of SOFIE on death places. The patterns were found for diedIn, because some
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people were born in the same place that they died in. This made SOFIE as-
sume that the pattern “X was born in Y ” identifies not just the birth place,
but also the death place of people. One option would be to add a rule say-
ing that a pattern can only express a single relation. This would force SOFIE
to decide whether the pattern talks about the death place or about the birth
place. This, however, would also prohibit using the same pattern for both the
birth date and the birth place. Another option would be to run SOFIE in larger
batches. Then, counterexamples can be found before the pattern is prematurely
accepted. Indeed, SOFIE does contain counterexamples for the interpretation of
“X was born in Y ” as an indication of the death place. These counterexamples,
however, appeared in a later batch, when the pattern was already accepted.

Discussion. As the diedIn relation shows, SOFIE’s approach comes with its
limitations. First, the pattern matching approach has inherent limitations, as
outlined in the discussion of the previous experiment. Second, the modeling of
SOFIE’s rules as a MAX SAT problem brings certain constraints. For example,
the current model does not allow quantifiers on the rules. Thus, it is not possible
to tell SOFIE that if there exists a death place, then there should also exist a
death date. As a result, SOFIE predicts death places for many people who
are in fact still alive. In general, the performance of SOFIE is better if more
semantic constraints exist. For example, strong type constraints, functional
constraints and also plausibility constraints on the birth and death dates can
help SOFIE rule out false hypotheses. This axiomatic information still has to
be provided by hand. Despite these limitations, the performance of SOFIE
under these challenging conditions is remarkably good. We are not aware of
any better Information-Extraction system for unstructured text from arbitrary
Web sources.

5.4.3 Comparison of Weighted MAX SAT Algorithms

We were interested in the performance of the FMS∗ Algorithm (Algorithm 8)
in comparison to other Algorithms. We ran two experiments, one in our SOFIE
setting and one on general MAX SAT problems.

5.4.3.1 SOFIE Setting

To see how the FMS∗ Algorithm performs in our SOFIE setting, we ran the algo-
rithm on a small corpus of 250 biography files (from Section 5.4.2). The adapted
LEILA found 3795 pattern occurrences. This resulted in 16,186 hypotheses. We
compared the FMS∗ Algorithm (Algorithm 8) to Johnson’s Algorithm [80] and
to the simple greedy Algorithm outlined in Appendix B.5. Table 30 shows the
results.

Table 30: Weighted MAX SAT Algorithms on Biography Files
Algorithm Time # Unsatisfied # Unsatisfied Weight of

violable inviolable unsatisfied
clauses clauses clauses

(of 172,165) (of 70,820) (% of total)
FMS∗ 15 min 241 0 0.0013
Johnson 7 min 2,357 0 0,0301
Simple 7 min 2,583 0 0.0365
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In general, all Algorithms perform very well: Only a tiny fraction of the rules
are not satisfied. All inviolable clauses are satisfied. As expected (see Section
5.2.2), the algorithms cannot satisfy all violable rules. The FMS∗ Algorithm
manages to satisfy the largest number of rules. It violates only one tenth of the
rules that the other algorithms violate.

5.4.3.2 Benchmark Setting

We were interested in the performance of the FMS∗ Algorithm on general MAX
SAT problems. Unfortunately, there are no widely accepted benchmarks for
approximation algorithms. Hence, we opted for benchmarks for optimal algo-
rithms. The International Conference on Theory and Applications of Satisfi-
ability Testing16 provides several benchmarks. Each benchmark consists of a
suite of weighted MAX SAT problems. We took all suites where the optimal
solution was available. These are three suites of problems: (1) randomly gen-
erated weighted MAX SAT problems with 2 variables per clause, (2) randomly
generated weighted MAX SAT problems with 3 variables per clause and (3) de-
signed weighted MAX SAT problems (geared for “difficult” optimum solutions)
with 3 variables per clause (see Table 31).

Table 31: Weighted MAX SAT Benchmarks
Benchmark # Problems Average Average

# variables # clauses
per problem per problem

Random 2 90 100.00 600.00
Random 3 80 70.00 650.00
Designed 3 15 138.33 3050.87

We ran again the Algorithms FMS∗ (Algorithm 8), Johnson [80] and the simple
algorithm from Appendix B.5. As a baseline, we ran also an algorithm that
sets all variables to 1 and an algorithm that sets all variables to 0. For each
problem and each algorithm, we computed the approximation ratio (i.e., the
weight of the clauses satisfied by the algorithm divided by the weight of the
clauses satisfied in the optimal solution, see Section 5.3.2). We averaged the
approximation ratios over all problems in a suite. Table 32 shows the results.

Table 32: Weighted MAX SAT Algorithms on Benchmarks
Algorithm Averaged approximation ratios, %

Random 2 Random 3 Designed 3
Johnson 86.6837 91.5369 99.9682
Simple 86.6919 91.4946 99.9682
FMS∗ 87.3069 92.2848 99.9702
All 1 80.2444 88.8820 0.0708
All 0 80.6011 88.7761 99.9682

The results show that all algorithms find good approximate solutions, with ap-
proximation ratios on average greater than 85%. In particular, all algorithms
are better than the simple baselines. The setting of benchmarks is somewhat ar-
tificial and not designed for approximate algorithms. However, the experiments

16http://www.maxsat07.udl.es/
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give us confidence that the FMS∗ Algorithm can have comparable performance
to Johnson’s Algorithm.

Discussion. In general, all approximation algorithms performed well – both
on the benchmarks and in our SOFIE setting. Despite their different approx-
imations guarantees, all algorithms performed comparably in practice. In the
SOFIE setting, however, the FMS∗ algorithm outperformed the other algorithms
by a large margin. We conjecture that this is due to the high number of con-
straints introduced by the functional relations (see again Section 5.2.2). Each
disambiguatedAs fact introduces such constraints. As discussed in Section 5.2.3,
these constraints are the weakness of Johnson’s Algorithm. Hence, FMS∗ deliv-
ers better results. We would like to emphasize, though, that our goal was to find
an algorithm that performs well in the SOFIE setting. In other settings, the
algorithm may perform worse than Johnson’s Algorithm. The approximation
guarantee of 1/2 gives a lower bound on the performance in the general case.

5.5 Conclusion

Summary. This chapter has presented the information integration system
SOFIE, which combines LEILA-like pattern-driven extraction and YAGO to
find new ontological facts. SOFIE unifies the domains of information extrac-
tion and ontological reasoning. By this unification, SOFIE is able to take into
account rule-based ontological constraints, such as the constraint that every
person is born in at most one place. Furthermore, the model allows SOFIE to
reason on disambiguations and the meanings of patterns. In SOFIE’s model,
established knowledge and new knowledge interact seamlessly to identify the
most plausible hypotheses. We have seen that the model of SOFIE generalizes
the reasoning that is already done during the construction of YAGO. We have
also seen that, in a certain sense, SOFIE subsumes the learning algorithm of
LEILA on positive and negative patterns. Finally, the chapter explained how
the model can be translated into a weighted MAX SAT problem and solved with
a high approximation ratio. Our experiments have shown that SOFIE achieves
a remarkable precision, even on unstructured Web documents. To our knowl-
edge, SOFIE is the first approach that can extract canonicalized facts about
individuals with different relations from unstructured Web corpora.

Discussion. Apart from the tokenization and the choice of the pattern type,
SOFIE is completely source-independent. There is no feature-engineering, no
learning with cross validation, no parameter estimation and no tuning on the
level of the MAX SAT computation. If one wants to go beyond the default im-
plementation, SOFIE’s model leaves room for variation. For example, instead of
generating facts about pattern occurrences, LEILA could generate facts that tell
which word occurred how often in which document. With appropriate rules, this
information could be leveraged to extract facts in the spirit of the co-occurrence
analysis proposed by De Boer et al. [20] (see Section 5.1.2). Similarly, LEILA
could be instructed to extract source-specific information (e.g., the defining
noun-phrase in the first sentence in a Wikipedia article). This would allow
using Wikipedia-tailored feature models – similar to the ones used by KYLIN
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[150]. Other types of textual facts are conceivable, such as facts about the co-
occurrences of entities, facts about the topic of the document or facts concerning
the style or language of the document. SOFIE’s framework is not limited to
binary patterns. Furthermore, SOFIE’s model does not necessarily have to be
cast into a weighted MAX SAT problem. Other options are conceivable, such
as probabilistic approaches, fuzzy-logic-based approaches or Markov Logic Net-
works [112]. SOFIE itself provides just the framework, in which information
extraction and ontological reasoning are joined.

Outlook. SOFIE is the third and last component of the information extraction
system described in this thesis. Thus, our system is now complete. The system
can not only extract new facts, but also assess their ontological quality and add
the facts of good quality to the ontology. The system can be used to make
YAGO ever larger, while maintaining its high quality. The following chapter
will discuss where YAGO is already used in practice.



6.1. Applications: NAGA 131

Chapter 6

Applications

The previous chapters have introduced the information extraction system
LEILA and the ontology YAGO. They have also presented the information
integration system SOFIE, which uses output produced by LEILA to enrich
YAGO. This chapter will give brief overviews of our projects that already make
use of YAGO. The projects include the ontological search engine NAGA, the
hybrid search engine ESTER, the information extraction system TOB and the
Tagbooster study on social tagging systems. Furthermore, this section will show
some projects by other teams that already use YAGO. In particular, this section
will point out to which ontologies YAGO already contributes.

6.1 NAGA

NAGA[81, 82]1 is an ontological search engine for YAGO. It is the brainchild
of my colleague Gjergji Kasneci2, with me, Georgiana Ifrim3, Maya Ramanath4

and my supervisor Gerhard Weikum5 as co-authors. This section will first mo-
tivate the need for ontological search engines. It will then go on to presenting
NAGA’s query language and explaining NAGA’s ranking model.

6.1.1 Ontological Search and Ranking

Problem Statement. The Internet has become a prime source of information.
However, all major Internet search engines are still text-based. This means that
they are restricted to finding keywords in Web pages. This is fully sufficient for
simple information needs, but highly inconvenient for more advanced queries.
Suppose for example that we are looking for people who are both scientists
and politicians. First, it is close to impossible to formulate this query in terms
of keywords. Second, the answer to this question is possibly distributed across
multiple pages, so that no state-of-the-art search engine will be able to find it. In

1http://mpii.de/~kasneci/naga
2http://mpii.de/~kasneci
3http://mpii.d/~ifrim
4http://mpii.de/~ramanath
5http://mpii.de/~weikum
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fact, posing this query to Google (by using the keywords “scientist politician”)
yields mostly news articles about science and politics.

Challenge. This example highlights the need for more explicit, unifying struc-
tures for the information of the Web. Ontologies, such as YAGO, could provide
one building block. But an ontology is useless for our purpose if it cannot be
queried in a user-friendly way. So the problem we have to tackle is twofold:

1. Designing a query language that allows formulating ontological queries in a
convenient way. This challenge has already been addressed by a number of
approaches6, including our own YAGO approach from Section 2.2.8. One
of the most prominent approaches is SPARQL [148]. However, neither
SPARQL nor our simple YAGO query language would allow us to capture
the transitivity in the subClassOf -relation. Hence, we cannot express that
a scientist whom we are looking for may be related to the class scientist
by an arbitrary number of subClassOf edges in the ontology.

2. Designing a ranking model on answers to ontological queries. An ontolog-
ical search engine that cannot rank its answers according to importance
would be highly inconvenient to use. However, the ranking of ontological
graphs is a completely unexplored field.

NAGA addresses both of these challenges by defining first a powerful query lan-
guage and second an ontologically sensitive ranking model. The NAGA system
is fully implemented and employs YAGO as a knowledge base.

6.1.2 Query Language

Queries. NAGA allows asking queries on an ontology. NAGA assumes that the
ontology is a directed labeled graph. The nodes of this graph are entities and
the edges are binary relations between them. Since YAGO can be projected into
such a model by omitting the fact identifiers, we use YAGO as the knowledge
base for NAGA. The query language of NAGA is graph-based as well: The user
formulates a query in the form of an ontological graph, in which some nodes or
edges are labeled with variables. Figure 10 shows how the query about scientists
and politicians can be formulated in this way:

scientist

?x

typetype

politician

Figure 10: A Simple NAGA Query

6See the full NAGA paper [81] for an overview.
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Answers. An answer to such a query is a subgraph of the ontology that matches
the query graph. Such an answer will instantiate the variables of the query, for
example as follows:

scientist

BenjaminFranklin

typetype

politician

Figure 11: An Answer to the Simple NAGA Query

Advanced Queries. In this sense, NAGA’s query language is similar to
SPARQL. But now suppose that, in the ontology, BenjaminFranklin is not con-
nected directly to the class scientist. Rather, there may be intermediate classes
such as physicist and naturalScientist. It is impossible to formulate the query
in SPARQL so that it matches this transitive structure. The NAGA query lan-
guage, however, allows labeling edges not just with simple relations (such as
type) but also with regular expressions over relations7. In the example, the
edge between ?x and scientist could be labeled with the regular expression

type subClassOf*

Then, this edge would match the path

BenjaminFranklin type physicist
subClassOf naturalScientist
subClassOf scientist

NAGA’s query language does not only allow finding paths in the ontology that
match regular expression, but also finding arbitrary paths8. This permits, for
example, to ask for the ontological connection between two people or for the sim-
ilarities between two countries. YAGO’s query language (see Section 2.2.8) is a
simplified version of NAGA’s language, extended by support for fact identifiers.

6.1.3 Ranking

Desiderata. A query can have multiple answers, even hundreds or thousands
of answers. Thus, it is essential to rank these answers by importance. The
ranking of ontological graphs is a completely unexplored area. We identified
three key desiderata that should influence the ranking:

1. Confidence: An answer should be ranked higher if it contains facts that
have high confidence values.

7[6] has presented a similar idea at the same conference as NAGA[82].
8See the full NAGA paper [81] for a formal definition of the query language.
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2. Informativeness: An answer should be ranked higher if a variable has
been instantiated by an entity that is important in the context of the query.
For example, when the user asks for physicists, important physicists should
be ranked first.

3. Compactness: Short answers should be preferred. For example, if paths
of different length match a regular expression, then the most compact one
should be ranked higher.

Probabilistic Model. The NAGA ranking model incorporates these three
desiderata9. It is inspired by language models as used in information retrieval
[69, 158]. In the NAGA ranking model, one tries to estimate the probability of
a certain answer graph g, given that a certain query q was asked, P (g|q). For
tractability, we assume independence between the edges of g, thus obtaining

P (g|q) =
∏

gi edge in g

P (gi|q)

Confidence. We express P (gi|q) by a mixture of two distributions:

P (gi|q) = αP (gi) + (1− α)P̃ (gi|q)
P (gi) is the query-independent probability that the edge of the answer graph is
a correct fact. As discussed in Section 3.3, P (gi) is exactly the confidence value
stored in YAGO for the fact gi.

Informativeness. Now we turn to the query-dependent probability P̃ (gi|q).
We observe that certain answers may be more informative than others. For
example, assume that the user asks for (famous) physicists:

?x type physicist

Then, the answer (BenjaminFranklin, type, physicist) will be more satisfactory
than the answer (BobUnknown, type, physicist). This is because Benjamin
Franklin is more important among the physicists than Bob Unknown. Speaking
in terms of YAGO, the importance of a fact is reflected by the number of its
witness pages. To measure the relative importance of an answer for the above
query, we consider all facts of the form

?x type physicist

We consider the total number of witnesses for these facts. Next, we consider the
number of witnesses for (BenjaminFranklin, type, physicist). The quotient of the
two will reflect the relative importance of Benjamin Franklin in the population
of physicists. In general, let qi be the edge in q that induced gi. We write m(qi)
for the set of facts in the ontology that match qi. Then, we estimate

P̃ (gi|q) =
#witnesses(gi)∑

f∈m(qi)
#witnesses(f)

9In the following, we present a simplified version of the original model of [81]. The models
are equivalent if each query edge corresponds to exactly one answer edge and if α = 1 in the
original model.
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Ranking. By the parameter α, the first desideratum (confidence) is weighted
against the second, independent, desideratum (informativeness). The third
desideratum (compactness) is taken into account automatically, as the formula
involves a multiplicative factor for each edge in the answer graph. A user study
has shown that NAGA can provide answers that are more satisfactory than the
answers delivered by standard search engines and other semantic search engines.
NAGA can be tried out online at Gjergji Kasneci’s homepage10.

6.2 ESTER

ESTER11 [12] is hybrid search engine that combines ontological search on YAGO
with full-text search on text documents. The concepts for ESTER have been
devised by Holger Bast12. ESTER is a joint project of Holger Bast, Ingmar
Weber13 and Alexandru Chitea from the Algorithms group of the Max-Planck
Institute and me from the Database group.

6.2.1 Ontological Search and Full-Text Search

The previous section 6.1 has introduced a search engine that can find facts in
an ontology. Likewise, there are search engines that allow finding keywords on
the Web. However, there may be queries that require a combination of the two.
Suppose, for example, that the user is looking for a politician who had something
to do with the pope. While the condition that the person be a politician is an
ontological constraint, the condition that the person have something to do with
the pope can be fulfilled best by showing that they appear together in a text
document.

There are a number of projects that aim at combining ontological search with
full-text search14. However, in most cases, efficiency poses a serious problem: In
addition to scanning the text corpus, a hybrid search engine also has to take into
account the millions of facts of the ontology. This entails that current hybrid
search engines still have response times of several seconds. It would be desirable
to have an engine that delivers the results at the user’s fingertips. This is what
ESTER does. YAGO serves as the ontological backbone of ESTER.

6.2.2 Prefix Search Engines

Word Occurrence Lists. ESTER is based on the prefix search engine from
[13]. The search engine works on a corpus, i.e., on a collection of text docu-
ments. For a given corpus, the engine maintains a word occurrence list. Each
entry of this list stores which word appears in which document at which posi-
tion15. Consider for example the following word occurrence list:

10http://mpii.de/~kasneci/naga
11Efficient Search on Text, Entities and Relations
12http://mpii.de/~bast
13http://people.epfl.ch/ingmar.weber/
14See the original paper [12] for a detailed overview.
15More precisely, it stores the ids of the words together with the ids of their documents in

a compressed form. See [13] for details.
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document doc1.html doc2.html doc1.html doc2.html ...
word a a b ba ...
position 1 17 9 42 ...

This list means that the word “a” occurs in the document doc1.html at position
1 and in doc2.html at position 17. As in the example, a word occurrence list
is always sorted by the lexicographic order of the words. This entails that the
prefix of a word (i.e., a substring starting from the first character) defines a
range in the list. For example, the prefix “b...” defines the range of all words
that are lexicographically larger than “b” (including “b”) and lexicographically
smaller than “c”. We call all words within this range (such as “barbecue”) the
completions of that prefix.

Basic Operations. The engine supports two basic operations on word occur-
rence lists.

1. Prefix Search: For a given word occurrence list, a given set of documents
and a given word range, a prefix search returns a sublist of the given word
occurrence list that contains only the documents from the given set and
only the words from the given range. For example, a prefix search allows
searching for all occurrences of words starting with “Pol...” in the doc-
uments doc1.html and doc2.html. Conveniently, the result of this prefix
search will also reveal all completions of “Pol...” in the given documents,
such as “Politics”, “Politician” or “Polyester”.

2. Join: Given two word occurrence lists, a join computes the common
words in both lists. Then, it delivers a new word occurrence list that
contains the entries from the two lists that feature a common word. For
example, if one word occurrence list contains occurrences of the words
“Politician” and “Scientist” and a second list contains occurrences of the
words “Politician” and “Musician”, then a join will first compute that
“Politician” is the only word that appears in both lists. Then, it will create
a new word occurrence list that contains all entries with “Politician” from
the first list and all entries with “Politician” from the second list.

Bast and Weber have shown [13] how these two operations can be implemented
very efficiently by using smart indexes. In fact, the search engine is so fast that
results can be delivered while the user types the query16. The challenge is to
transfer this technology to the hybrid search on full text and ontological facts.

6.2.3 Weaving the Ontology into the Text

Artificial Words. The idea behind ESTER is to add artificial words to the text
corpus, so that full-text search on the corpus will implicitly take into account
the facts from the YAGO ontology. This process takes place in two stages:
First, every occurrence of an entity in the corpus is identified and replaced by
the artificial word c:e, where e is the unique ontological name of the entity and

16This can be tried out with the search function at the home page of the Max-Planck
Institute for Informatics, http://mpii.de.
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c is the class that the entity is an instance of. For example, each occurrence of
Tony Blair in the corpus is replaced by

politician:tonyBlair

Second, we identify for each entity in the ontology one canonical document in
the corpus. If the corpus does not have a canonical document for an entity,
we create a new document. To this document, we add one artificial word for
each fact of the ontology that talks about the entity. For example, we add the
following words to the document for Tony Blair17:

politician:tonyBlair
bornInYear:1953
nationality:british

Query Answering. ESTER can answer different types of queries: Simple key-
word queries can be answered by prefix searches. For example, a prefix search
for “pope” will deliver all documents that contain the word “pope”. Ontological
queries can be answered as follows: Suppose we are looking for all politicians
born in 1953. We first launch a prefix search for “bornInYear:1953”. This will
deliver all documents in which “bornInYear:1953” appears – i.e., exactly the
canonical documents of all entities born in 1953. The document about Tony
Blair will be among them, as will be the document about the pianist David
Benoit, for example, who was also born in 1953. On these documents, we
perform another prefix search for “politician:...”. This search will go through
the documents of entities born in 1953 and retain only those documents that
contain “politician:...”. These documents are exactly the canonical documents
about politicians born in 1953. Last, ESTER can also perform hybrid queries.
For example, to ask for all politicians who had something to do with the pope,
it suffices to combine a prefix search for “pope” with a prefix search for “politi-
cian:...”. In fact, ESTER delivers Tony Blair for this search, as he was granted
an audience with Pope Benedict XVI in 2006.

Additional Features. By using join operations, we can also combine condi-
tions that are satisfied in different documents. For example, we can first search
for all politicians born in 1953. As we already discussed, this search involves
two prefix searches and delivers the canonical documents about politicians born
in 1953. Then, we can search for all documents that contain the word “pope”
and the prefix “politician:...”. This search also involves two prefix searches and
delivers all documents that contain the word “pope” and the mentioning of
a politician. Joining these two lists will deliver all politicians that appear in
both lists – i.e., all politicians born in 1953 that had something to do with the
pope. It can be proven that the full technology of ESTER (not the simplified
one outlined in this thesis) can answer arbitrary SPARQL[148] queries on the
ontology.

ESTER comes with a user interface [13] that delivers immediate results while
the user is still typing the query. It also proactively suggests completions. For
example, when the user types “Pope Bened”, ESTER will suggest “Benedict”.
Furthermore, ESTER already displays instances of classes. For example, when
the user types “politician”, ESTER already displays a list of politicians it knows.

17This section presents a very simplified version of the actual method outlined in [12].
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ESTER has response-times of less than a second. This contrasts with the per-
formances reported in [31, 21] and also our own NAGA system [81], which are
orders of magnitudes slower. ESTER can be tried out online at Holger Bast’s
homepage18.

6.3 TOB

TOB19 [159] is an information extraction system that can extract time infor-
mation along with the facts. TOB has been driven by our visiting student Qi
Zhang from the University of Science and Technology of China, with me as a
co-author.

Time Information. Many real-world facts are only valid within a certain time-
frame. For example, the fact that Jack Welch is the CEO of General Electric
was true between 1981 and 2001 but no longer holds today. However, no current
information extraction approach extracts the time dimension together with the
fact20. TOB is a system that can deliver this type of information.

Time Representation. TOB extends LEILA (see Chapter 4) and produces
facts for YAGO (see Chapter 3). In the spirit of YAGO, time information is
represented as additional facts about the primary fact (see Section 2.2.6). More
precisely, the time range of a fact f is modelled by 4 relations, which each hold
between the identifier of f , idf , and a time interval (see Section 2.2.4):

idf startsAfter t1
idf startsBefore t2
idf endsAfter t3
idf endsBefore t4

This representation means that f starts after the start of t1, it starts before the
end of t2, it ends after the beginning of t3 and it ends before the end of t4. We
call this set of facts a fuzzy time range. If f represents the fact that an entity is
alive, we can use a fuzzy time range to describe the lifespan of the entity. This
representation gives us much flexibility, because it allows us to represent partial
information about the time range (such as the start interval of a fact without
the end interval etc.).

Time Operations. We define two operations on fuzzy time ranges, as shown
in Figure 1221. For each fuzzy time range, the line extends from startsAfter to
endsBefore, while the box extends from startsBefore to endsAfter. Seen this
way, the line represents the time during which the fact could potentially hold,
while the box represents the time during which the fact holds for sure.

Assuming that A and B are two time intervals for the same fact, the inter-
section operator ∩ computes a more precise time interval for the fact. It shrinks
the range in which the fact could potentially hold and it widens the range it
which it does hold for sure. The inference operator ∇ has a different purpose:

18http://mpii.de/~bast
19Timely Business Ontologies
20See the original paper [159] for an overview of related work.
21See the original paper [159] for a formal definition of the operators.

http://mpii.de/~bast�
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Assuming that A and B are the lifespans of two entities, it computes the time
range of the events in which both entities can participate.

A

B

A ∇∇∇∇ B

A ∩∩∩∩ B

Figure 12: Operations on Fuzzy Time Ranges

TOB System. The TOB information extraction has been implemented by Qi
Zhang. It extends LEILA as follows: In each linkage (see again Section 4), it
identifies temporal expressions (such as dates) and temporal prepositions (such
as “after” or “on”). This allows TOB to associate a fuzzy time interval with the
facts. For news articles, the system also extracts the date of the publication.
This allows TOB to dereference relative time expressions (such as “last week”).
TOB uses fuzzy time intersection to compute a more precise time interval for a
fact once more information becomes available. It uses lifespan information from
the ontology to constrain the time range of an event by fuzzy time inference.
An evaluation has shown that TOB achieves a precision of around 90%.

6.4 Tagbooster User Study

The goal of the Tagbooster User Study[137] was to analyze user behavior in
social tagging systems. The user study was my project during my internship at
Microsoft Research Cambridge under the supervision of Milan Vojnović22 and
Dinan Gunawardena23. YAGO served as a dictionary for assessing semantic
properties of the tagging system.

6.4.1 Social Tagging

Tags. Social Tagging Systems allow users to assign keywords to content items.
For example, the social tagging system del.icio.us allows users to maintain a
collection of their favorite Internet links. These link collections can be shared
online with other users and the users can assign tags (keywords) to the links.
These tags are useful, for example, for organizing the link collections, finding
other people’s links and categorizing links. Social tagging systems have become
very popular: There exist numerous tagging systems for sharing pictures, news
stories, books, blogs and videos.

22http://research.microsoft.com/~milanv
23http://research.microsoft.com/~dinang

http://research.microsoft.com/~milanv�
http://research.microsoft.com/~dinang�
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The Use of Tags. From a scientific point of view, tags are interesting because
they provide the key for search, classification, and possibly even information
extraction for non-textual items such as songs, pictures, and videos. The use-
fulness of tags for these purposes, however, depends on two aspects:

1. Many tags serve purely organizational purposes (such as “toread***”).
These are of lesser use for semantic applications. It is unclear what pro-
portion of the tags is actually “meaningful”.

2. Some social tagging systems suggest tags to the user, so that the user
can simply click on the suggestion instead of typing his own tag. It is
unclear in what way the user is influenced and possibly biased by these
suggestions.

The TagBooster User Study sets out to shed light on these issues24. It employs
the YAGO ontology to define the notion of meaningfulness for the first item.

6.4.2 Meaningfulness

Our Dictionary. To establish whether a tag is “meaningful” or not, we com-
piled a dictionary as a proxy for the notion of “meaningful”. A normal dic-
tionary of English words would not suffice, as tags can also be proper names
(such as “Madonna”) and still be meaningful. We opted for YAGO, because by
help of Wikipedia, YAGO contains the names of more than a million popular
individuals. We combined YAGO with the full WordNet [59], thus obtaining a
dictionary of about 2.8 million words25.

Frequency Vectors. We would like to compare the tags that have been applied
to a Web page to other data about the page, such as the title of the page, the
category of the page in DMOZ26, the keywords used to search for that page and
also the content of the page itself. For this purpose, we define a framework in
which all these data sources for one page are represented uniformly: For a given
Web page, each data source defines a frequency vector. A frequency vector is
a function from terms (such as tags, words or category names) to positive real
numbers (such as frequency counts, weights or salience scores). For example, the
content of a Web page can be represented by a frequency vector that assigns to
each word the number of occurrences in the page (0 if the word does not appear
in the page). Note that, because of the generality of the definition, probability
distributions can also be seen as frequency vectors.

Levels of Granularity. A frequency vector can be interpreted at three levels
of granularity:

1. Frequency Level
At this level, one is interested in how often a particular tag or word ap-
pears. This is the level of highest granularity.

24See the original paper [137] for an overview of related work.
25In our study, we considered only English words, because our target system, del.icio.us, is

mostly English. However, language and culture aspects may be an interesting area of future
research.

26http://dmoz.org

http://dmoz.org�
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2. Ranking Level
At this level, one is only interested in the relative order of terms, i.e., in
establishing which term is more important than another.

3. Support Level
At this level, one is only interested in whether the frequency value of a
term is non-zero. This is the coarsest granularity level of frequency vectors,
which boils down to interpreting the vector as a set of terms.

Depending on the data source, certain granularity levels may be most appro-
priate. For example, the tag frequency vector for a Web page reveals how often
a certain tag was applied to the page. Thus, the frequency level may be the
most appropriate one. Our dictionary, on the other hand, can also be seen as a
frequency vector: It stores whether a certain term exists in the dictionary (fre-
quency 1) or not (frequency 0). This frequency vector calls for an interpretation
on the support level.

Metrics for Frequency Vectors. The framework of frequency vectors allows
seeing many standard metrics in a new light: The precision and recall metrics,
for example, can be interpreted as comparing two vectors on the support level.
The NDCG [76] metric essentially compares the ranking of one vector to the
frequencies of another. Precision at k compares the ranking of one vector to the
support of another. The cosine metric compares two vectors on the frequency
level. In addition, we define another metric, the fuzzy recall of a frequency
vector f with respect to another vector g:

frec(f, g) = 1−
∑

t max(g∗(t)− f∗(t), 0)∑
t g∗(t)

with

f∗(t) =
f(t)

maxt′f(t′)
; g∗(t) =

g(t)
maxt′g(t′)

The fuzzy recall and its pendant, the fuzzy precision, generalize the standard
precision and recall metrics to the frequency level. These metrics allow us to
compare heterogeneous sources of data on and across different levels of granu-
larity.

Results. We applied our metrics to the public portion of the del.icio.us tagging
system. We found that up to 50% of the tag applications may be “not mean-
ingful”. This contrasts with much lower proportions of non-meaningful terms in
document content and search engine queries. Furthermore, our analysis shows
that the more popular a tag is, the more likely it is to be meaningful. In other
words, aggregating the top tags of an item biases to filtering out the meaningful
tags. This is not a priori clear as some non-meaningful words can be rather
common (such as “toread”, “todo”).

Moreover, our analysis validates that the more users tagged an item, the
more meaningful the most popular tags are. However, we could show that the
meaningfulness increases significantly only if the item is tagged by more than
100 people. This may have consequences for small-scale tagging scenarios (such
as enterprise environments). Last, our analysis indicates that tags applied to
an item typically intersect more with the queries and the title than with the
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content. This suggests that social tags could be a useful additional source for
search applications.

6.4.3 Influence of Suggestions

Suggestions. Some social tagging systems provide suggestions: Whenever the
user tags an item, he can either choose one of the suggested tags or type a tag
himself. One purpose of the suggestions is to make tagging simpler for the user.
The problem is that the suggestions may bias the user, so that the applied tags
do not reflect the user’s true intention. It is difficult to assess the effect of the
suggestions, because a tag may happen to be the user’s true intention even if it
is also displayed as a suggestion.

Probabilistic Model. To assess the influence of the suggestions, we use a
model introduced by Vojnović et al. [142]. It assumes that tags are applied ac-
cording to the following probabilistic model: The probability that a user applies
a tag t while the suggestion set S is displayed is a mixture of two distributions:

Pr(t|S) = αS · fS(t) + (1− αS) · g(t)

With probability αS , the user decides to take a tag from the suggestion set
S. fS(t) is the probability that the user chooses the tag t from the suggestion
set. Consequently, fS(t) = 0 for all tags t 6∈ S. With probability 1 − αS ,
the user chooses an arbitrary tag, which may or may not be in S. g(t) is the
probability distribution over tags for this choice. We assume fS(t) = g(t)/g(S),
for t ∈ S, i.e., in the cases when the sampling is from the distribution fS , the
user preference over tags is proportional to g but confined to the set S.

Estimating the Influence. Our goal is to estimate the parameter αS , which
mirrors the “persuasive power” of the suggestion set S. We consider an exper-
iment, in which different users tag the same item. Let Ti be the set of tags
applied by the ith user. We define the precision of the experiment with respect
to S as the proportion of applied tags that are in S:

prec =
∑

i |Ti ∩ S|∑
i |Ti|

Now we consider two experiments: In the first (unbiased) experiment, different
users apply tags to the same item without any suggestions shown. Let precU

be the precision of this experiment with respect to S. In the second (biased)
experiment, different users tag the item from the first experiment while S is
displayed. Let precB be the precision of this experiment with respect to S. The
desired parameter αS can be estimated [137] as

αS =
precB − precU

1− precU

If the tags that the users applied and the suggested tags are statistically indepen-
dent, then precB and precU will converge to the same value as the experiments
go on, and we then have that αS goes to 0, indicating no imitation. If, on the
contrary, users apply tags only because they are suggested, then precB will tend
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to 1 and this will result in αS tending to 1, indicating full imitation. αS can
be generalized to the proportion of biased tags in general, called the imitation
rate.

Results. The goal of the internship was to conduct and evaluate a user study.
More than 4000 volunteers contributed. Roughly half of them were Microsoft
employees, while the others were other Internet users attracted by our advertise-
ments for the project. The participants were asked to apply tags to Web pages
under various design schemes. We are well aware that tagging in the context of
a user study may differ from tagging in a social system. However, we believe
that the insights that we gained from our user study give a valuable hint on the
situation in real systems.

For our experiments, the imitation metric indicated that up to 30% of the
tag applications have been induced purely by presence of the suggestions. Since
most existing tagging systems suggest tags based on the tags that have been
applied by previous users, our result suggests that the popularity of tags in
existing systems may be skewed.

Furthermore, our user study revealed that users had a slight preference for
the first tag in the list of suggestions. Also, users were more likely to be in-
fluenced by the suggestion set (beyond their actual preference) if the suggested
tags were popular tags. However, we could also show that the bias towards the
suggested tags was not due to laziness: The imitation rate stayed the same, no
matter whether the suggested tags could be applied by clicking them or whether
they had to be copied over by typing them. Our results are explained in detail
in [137].

6.5 Other Applications

YAGO has found its way into several other projects by other teams. This section
lists some of the most prominent ones.

Entity Organization. Stoyanovich et al.[130] have built an enriched Web
graph, which contains Web pages and the entities mentioned in them. Based
on this graph, the authors propose authority-based ranking techniques that
combine Web page authorities and entity authorities into a mutual reinforcement
process. The ontological basis for the enriched graph structure is YAGO.

Demartini [50] aims at finding per-topic experts among the Wikipedia au-
thors. YAGO’s semantics is exploited to refine and disambiguate Wikipedia
topics in the expert finding process.

Information Extraction. The idea of YAGO’s category heuristics has
been applied by Ponzetto et al. [107] to extract ontological knowledge from
Wikipedia’s category system. Similarly, the KOG [151] project relies on YAGO’s
Wikipedia-to-WordNet mapping in order to construct a taxonomy.

Ontology Construction. YAGO is used in several major ontology projects
(Figure 13). Freebase27 is a community effort to gather ontological data. YAGO

27http://freebase.com

http://freebase.com�
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is currently being merged into Freebase and will thus contribute to bootstrap-
ping the project. UMBEL28 is a very young project, which aims to provide
a structure of subject concepts. YAGO will contribute the individuals to this
structure. The Suggested Upper Model Ontology SUMO [102] is a highly ax-
iomatized manually assembled ontology. We have merged SUMO and YAGO
[49], thus combining the rich axioms of SUMO with the large number of indi-
viduals from YAGO. The Linking Open Data Project [18] aims to interconnect
existing ontologies as Web services. YAGO is already available as a Web service
(courtesy of Zitgist LLC.29) and thus an integral part of the project. Cyc [95]
is a commercial effort to create a huge semantic knowledge base. We are co-
operating with the Cyc team in order to integrate data from YAGO into Cyc.
DBpedia [8] is a project that aims to extract ontological data from Wikipedia.
YAGO is used in DBpedia as a taxonomic backbone. It links the individuals to
the WordNet hierarchy of concepts in DBpedia.

DBpedia
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Figure 13: A Hitchhiker’s Guide to Ontology

28http://www.umbel.org
29http://www.zitgist.com
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6.6 Summary

This chapter has presented some projects that already make use of YAGO.
These projects include applications as diverse as search engines, information
extraction systems and analyses of social systems. In particular, this chapter
has shown to which ontologies YAGO already contributes. These include logic-
based projects such as SUMO as well as community-based projects such as
Freebase or Semantic Web oriented projects such as DBpedia.
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Chapter 7

Conclusion

Summary. This thesis has presented a new approach for the automated con-
struction and growth of an ontology. The approach consists of three contri-
butions: the core ontology YAGO (introduced in Chapter 3), the information
extraction system LEILA (presented in Chapter 4) and the information in-
tegration framework SOFIE (in Chapter 5). Together, these systems form a
powerful suite of tools, which allow not only constructing an ontology of high
quality, but also maintaining and expanding it. We have seen that the YAGO
ontology already enjoys a number of applications in different areas of research.
In particular, YAGO is already being employed by many other major ontology
projects.

Outlook. There are numerous opportunities for extending and improving this
work. For example, ways could be found to discover relations automatically,
so that they do not have to be provided by hand. New sources for knowledge
acquisition can be tapped. New models for information extraction can be de-
veloped and analyzed. New reasoning mechanisms can be found and used. New
ways of combining existing knowledge can be developed and explored. New ap-
plications for ontologies can spring up. These challenges can best be addressed
in co-operation with other researchers and teams. Hence, we plan to make
the code toolkit of YAGO, LEILA and SOFIE publicly available, so that new
cooperations, new applications, and also new derivatives can come to life.

Discussion. Despite its size and quality, the fame of YAGO will vanish one
day. Ever more comprehensive ontologies will emerge, with ever more facts and
ever higher quality guarantees. Thus, it is likely that YAGO itself is some day
absorbed into other projects. Today, however, the acceptance of YAGO by dif-
ferent communities proves something more durable: It proves the validity of our
approach to ontology construction. Techniques such as type coherence check-
ing, learning with counterexamples, and ontology-based information extraction
will remain useful. More than that, the applications of YAGO have proven that
ontological knowledge benefits numerous tasks in the area of computer science.
And this, ultimately, might be another small step towards making computers
more useful for mankind.
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Appendix A

YAGO Detailed Data

A.1 Attribute Map

This appendix lists the infobox attributes together with their target relation
and their markers, as explained in Section 3.2.1.1.

Attribute Relation Inverse Manifold Indirect
abbreviation means

√
academyawards hasWonPrize

√
accessionEUdate during
afiawards hasWonPrize

√
alias means

√
alma mater graduatedFrom
alternatename means

√
area hasArea
area total km hasArea
artist created

√
author wrote

√
awards hasWonPrize

√
baftaawards hasWonPrize

√
birth bornOnDate
birth date bornOnDate
birth name means

√
birth place bornIn
birthdate bornOnDate
birthname means

√
born bornOnDate
budget hasBudget
calling code hasCallingCode
capital hasCapital
cctld hasTLD
children hasChild

√
cianame means

√
citizenship isCitizenOf

√
city#party null
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Attribute Relation Inv. Man. Ind.
combatant participatedIn

√ √
commander isLeaderOf

√
commander-in-chief isLeaderOf

√
common name means

√
company name means

√
composer created

√
cover artist madeCoverFor

√
creator created

√
currency hasCurrency
date created createdOnDate
datebirth bornOnDate
death diedOnDate
death date diedOnDate
death place diedIn
deathdate diedOnDate
density km hasPopulationDensity
designer created

√
developer created

√
died diedOnDate
director directed

√
doctoral advisor hasAcademicAdvisor
doctoral students hasAcademicAdvisor

√ √
duration hasDuration
economy#country null
established date establishedOnDate
expenses hasExpenses
export-goods exports

√
export-partners dealsWith

√
exports hasExport
famous works created

√
father hasChild

√
film#country producedIn
followed by hasSuccessor
foundation establishedOnDate
founded createdOnDate
founder created

√
fullname means

√
gdp hasGDPPPP
gdp nominal hasNominalGDP
gdp nominal year during

√
gdp ppp hasGDPPPP
gdp ppp year during

√
gdp total hasGDPPPP
gdp year during

√
genre isOfGenre
gini hasGini
gini year during

√
goldenglobeawards hasWonPrize

√
growth hasEconomicGrowth
hdi hasHDI
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Attribute Relation Inv. Man. Ind.
hdi year during

√
headquarters locatedIn
height hasHeight
homepage hasWebsite
imdb id hasImdb
import-goods imports

√
import-partners dealsWith

√
imports hasImport
inflation hasInflation
influenced influences

√
influenced by influences

√ √
influences influences

√ √
instrument musicalRole

√
isbn hasISBN
known for interestedIn

√
labor hasLabor
language hasProductionLanguage
language family#child type

√
language family#region isSpokenIn

√
leader name isLeaderOf

√
lived bornOnDate
local name means

√
location locatedIn
location city locatedIn
magnum opus wrote
main interests interestedIn

√
mission name means

√
mother hasChild

√
musical artist#genre null
name means

√
national military#amount hasBudget
national military#available hasNumberOfPeople
national military#country hasMilitary

√
national motto hasMotto
nationality isCitizenOf

√
native name isNativeNameOf

√ √
next hasSuccessor
next album hasSuccessor
nickname means

√
notable ideas discovered

√
null#gini hasGini
num employees hasNumberOfPeople
occupation type

√
official languages hasOfficialLanguage

√
official name means

√
officiallang hasOfficialLanguage
order isNumber
organs joined
origin originatesFrom
pages hasPages
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Attribute Relation Inv. Man. Ind.
parents hasChild

√ √
party isAffiliatedTo

√
percent GDP usesGDP
percent water hasWaterPart
percentwater hasWaterPart
place happenedIn
placeofbirth bornIn
placeofdeath diedIn
population hasPopulation
population as of during

√
population density km hasPopulationDensity
population estimate hasPopulation
population estimate year during

√
population total hasPopulation
populationdate during

√
populationyear during

√
poverty hasPoverty
preceded by hasPredecessor
predecessor hasPredecessor
premier isLeaderOf

√
prev hasPredecessor
prizes hasWonPrize

√
producer produced

√
production company produced

√
products hasProduct
reign during
release date publishedOnDate
residence livesIn
retired until

√
revenue hasRevenue
runtime hasDuration
scientist#field interestedIn
slogan hasMotto
song#length hasDuration
spouse isMarriedTo

√
starring actedIn

√ √
successor hasSuccessor
term end until

√
term start since

√
time zone inTimeZone
totalarea km hasArea
turnedpro since

√
unemployment hasUnemployment
url hasWebsite
utc offset hasUTCOffset
website hasWebsite

√
weight hasWeight
work institution worksAt
writer created

√
writer#genre null
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Attribute Relation Inv. Man. Ind.
year end until

√
year start since

√
years active during
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A.2 Relations

This appendix provides a list of all relations in YAGO with their domain and
range and their number of facts. This table lists all relations, including the
witness relations (foundIn, during and using) and the trivial relations (inUnit,
hasValue and describes). Class names that start with “yago...” have been intro-
duced explicitly for YAGO (see Section 2.2.4). All other classes are WordNet
classes.

Relation Domain Range #Facts
during yagoFact yagoTimeInterval 21287651
foundIn yagoFact yagoURL 21224081
using yagoFact program 21224081
means yagoWord entity 5347523
type entity yagoClass 4505603
inLanguage yagoFact language 3563111
isCalled entity yagoWord 2185860
describes yagoURL entity 2124543
familyNameOf yagoWord person 569410
givenNameOf yagoWord person 568852
bornOnDate person yagoDate 441274
subClassOf yagoClass yagoClass 249463
diedOnDate person yagoDate 205469
hasWebsite entity yagoURL 130098
hasValue yagoQuantity yagoNumber 111961
inUnit yagoFact unit of measurement 111961
establishedOnDate entity yagoDate 110830
isOfGenre entity yagoClass 106797
created entity entity 95248
hasPopulation location yagoNonNegativeInteger 77928
hasArea location yagoArea 62720
locatedIn location location 60261
hasSuccessor entity entity 55535
hasUTCOffset location yagoInteger 52212
since yagoFact yagoTimeInterval 47714
hasPopulationDensity location yagoDensityPerArea 44628
produced entity entity 41747
hasProductionLanguage entity language 40738
bornIn person location 36189
hasImdb entity yagoIdentifier 33451
hasDuration entity yagoDuration 30791
actedIn person entity 28836
until yagoFact yagoTimeInterval 26049
directed person entity 23723
hasWonPrize entity entity 23076
writtenInYear entity yagoDate 20663
hasPredecessor entity entity 20515
musicalRole person yagoClass 15516
livesIn person location 14710
diedIn person location 13618
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Relation Domain Range #Facts
isAffiliatedTo entity entity 13038
wrote person entity 12469
createdOnDate entity yagoDate 12377
publishedOnDate entity yagoDate 11831
originatesFrom person location 11497
influences person person 9614
hasPages entity yagoNonNegativeInteger 9596
hasMotto entity yagoString 8309
isNativeNameOf yagoWord location 8063
participatedIn entity entity 7530
politicianOf person location 6198
hasNumberOfPeople entity yagoNonNegativeInteger 6171
hasHeight physical entity yagoLength 5926
hasISBN entity yagoISBN 5835
isPartOf yagoClass yagoClass 5022
graduatedFrom person university 4968
isCitizenOf person country 4865
hasWeight physical entity yagoWeight 4781
hasChild person person 4454
isMarriedTo person person 4208
hasBudget entity yagoMonetaryValue 4170
happenedIn entity location 3698
hasRevenue entity yagoMonetaryValue 3110
isLeaderOf person entity 2886
interestedIn person entity 2131
hasAcademicAdvisor person person 1599
isNumber person yagoNonNegativeInteger 1580
worksAt person entity 1401
hasCapital location location 1368
isMemberOf yagoClass yagoClass 1257
hasProduct entity entity 997
madeCoverFor person entity 951
isSubstanceOf yagoClass yagoClass 728
hasOfficialLanguage location language 560
hasCurrency location entity 367
hasCallingCode location yagoCallingCode 311
hasGDPPPP location yagoMonetaryValue 273
hasTLD location yagoTLD 234
hasWaterPart location yagoProportion 228
hasHDI location yagoRationalNumber 212
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Relation Domain Range #Facts
hasGini location yagoRationalNumber 99
dealsWith location location 98
domain yagoRelation yagoClass 94
range yagoRelation yagoClass 92
discovered person entity 87
exports location yagoClass 72
hasNominalGDP location yagoMonetaryValue 62
imports location yagoClass 53
hasImport location yagoMonetaryValue 44
hasInflation location yagoProportion 44
hasEconomicGrowth location yagoProportion 43
hasExpenses entity yagoMonetaryValue 43
hasExport location yagoMonetaryValue 41
hasUnemployment location yagoProportion 41
hasLabor location yagoNonNegativeInteger 39
hasPoverty location yagoProportion 35
subPropertyOf yagoRelation yagoRelation 6
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A.3 Heuristics

This appendix lists all of our heuristics with their type and estimated accuracy.
The heuristics are mostly named after their target relation.

Hueristic Type Accurracy
hasExpenses Infobox 100.0000%
hasInflation Infobox 100.0000%
hasLabor Infobox 97.6744%
during Infobox 97.4895%
type Category 96.9434%
participatedIn Infobox 96.9434%
plays Infobox 96.9434%
establishedOnDate 1 Category 96.8429%
createdOn Infobox 96.8429%
originatesFrom Infobox 96.8429%
worksAt Infobox 96.8429%
locatedIn Category 96.7902%
politicianOf Category 96.7356%
actedIn Infobox 96.6208%
hasArea Infobox 96.6208%
hasCurrency Infobox 96.6208%
diedOnDate Category 96.5603%
madeCoverFor Infobox 96.5603%
hasCapital Infobox 96.4975%
hasFamilyName Other 96.4325%
hasGivenName Other 96.4325%
BornPerson Infobox 96.3870%
bornInLocation Infobox 96.3650%
diedOnDate Infobox 96.3650%
isAffiliatedTo Infobox 96.3650%
livesIn Infobox 96.3650%
wrote Infobox 96.3650%
bornOnDate Category 96.2949%
establishedOnDate 2 Category 96.2949%
writtenInYear Category 96.2949%
means Infobox 96.2949%
dealsWith Infobox 96.2220%
directed Infobox 96.1462%
establishedOnDate Infobox 96.1462%
hasPopulation Infobox 96.0974%
bornOnDate Infobox 96.0673%
hasPoverty Infobox 96.0000%
hasPredecessor Infobox 95.9902%
isCitizenOf Infobox 95.9902%
diedInLocation Infobox 95.9851%
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Target Relation Type Accurracy
graduatedFrom Infobox 95.8994%
isLeaderOf Infobox 95.8994%
influences Infobox 95.8099%
interestedIn Infobox 95.7309%
hasWonPrize 2 Category 95.7165%
hasImdb Infobox 95.7165%
hasUTCOffset Infobox 95.7165%
happenedIn Infobox 95.6188%
hasHDI Infobox 95.6188%
hasISBN Infobox 95.6188%
hasPopulationDensity Infobox 95.6188%
hasWaterPart Infobox 95.6188%
Redirect Infobox 95.5639%
sells Infobox 95.5639%
hasMotto Infobox 95.5165%
hasPages Infobox 95.5165%
hasProductionLanguage Infobox 95.5165%
Lived Infobox 95.4955%
hasTLD Infobox 95.4094%
hasWonPrize 1 Category 95.3521%
hasHeight Infobox 95.3521%
produced Infobox 95.3521%
hasCallingCode Infobox 95.2970%
isNativeNameOf Infobox 95.2970%
hasDuration Infobox 95.2770%
hasWebsite Infobox 95.2770%
inTimeZone Infobox 95.2093%
hasBudget Infobox 95.1993%
hasDoctoralAdvisor Infobox 95.1789%
hasNominalGDP Infobox 95.1789%
hasOfficialLanguage Infobox 95.1789%
WordNetLinker Other 95.1191%
hasWeight Infobox 95.1191%
InfoboxType Other 95.0893%
hasSuccessor Infobox 94.8615%
hasChild Infobox 94.4725%
isMarriedTo Infobox 94.4612%
created Infobox 94.2551%
hasWonPrize Infobox 94.0451%
exports Infobox 93.9676%
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Target Relation Type Accurracy
hasImport Infobox 93.9676%
locatedIn Infobox 93.9130%
hasExport Infobox 93.7720%
isOfGenre Infobox 93.6227%
hasRevenue Infobox 93.5117%
producedInYear Infobox 92.8529%
type Infobox 91.7355%
hasGDPPPP Infobox 91.2219%
hasGini Infobox 91.0075%
discovered Infobox 90.9829%
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Appendix B

Proofs

B.1 Convergence of →
Let F be a (finite) set of fact triples, as defined in Section 2.2.5. Let → be the
rewrite system defined there (see [9] for a reference on term rewriting).

Theorem 1: [Convergence of →]
Given a set of facts F ⊂ F , the largest set S with F →∗ S is finite and unique.

Proof: All rules of the rewrite system are of the form F → F ∪ {f}, where
F ⊆ F and f ∈ F . Hence → is monotone. Furthermore, F is finite. Hence →
is finitely terminating. It is easy to see that if F → F ∪{f1} and F → F ∪{f2}
for some F ⊆ F and f1, f2 ∈ F , then

F → F ∪ {f1} → F ∪ {f1, f2}
F → F ∪ {f2} → F ∪ {f1, f2}

Hence → is locally confluent. Since → is finitely terminating, → is globally
confluent and convergent. Thus, given any set of facts F ⊆ F , the largest set
DF with F →∗ DF is unique and finite.

B.2 Uniqueness of the Canonical Base

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

Proof: A canonical base of a YAGO ontology y is any base b of y, such that
there exists no other base b′ of y with |b′| < |b|. Here, we prove that, for a
consistent YAGO ontology, there exists exactly one such base. In the following,
→ denotes the rewrite system and F denotes the set of facts defined in Section
2.2.5.

Lemma 1: [No circular rules]
Let y be a consistent YAGO ontology, and {f1, ..., fn} a set of facts. Then there
are no sets of facts F1, ..., Fn, such that that F1, ..., Fn ⊆ D(y) and
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F1 ↪→ f1 with f2 ∈ F1

F2 ↪→ f2 with f3 ∈ F2

...
Fn ↪→ fn with f1 ∈ Fn

Proof: By analyzing all possible pairs of rule schemes (1)...(5), one finds that
the above rules must fall into one of the following categories:

• All rules are instances of (5). In this case, (c, subClassOf, c) ∈ D(y) for
some common entity c and hence y cannot be consistent.

• All rules are instances of (1). In this case, (c, subRelationOf, c) ∈ D(y) for
some common entity c and hence y cannot be consistent.

• All rules are instances of (2). In this case, (c, r, c) ∈ D(y) for some common
entity c and relation r and (r,type,atr)∈ D(y) and hence y cannot be
consistent.

• n = 2, one rule is an instance of (1), and the other an instance of (2).
In this case, (c, r, c) ∈ D(y) for some common entity c and relation r and
(r,type,atr)∈ D(y) and hence y cannot be consistent.

Lemma 2: [No derivable facts in canonical base]
Let y be a consistent YAGO ontology and b a canonical base of y and let
B = range(b). Let f ∈ D(y) be a fact such that D(y)\{f} → D(y). Then
f 6∈ B.

Proof: Since b is a base, there is a sequence of sets of facts B0, ..., Bn such that

B = B0 → B1 → B2 → . . . → Bn−1 → Bn = D(y)

This sequence is a sequence of rule applications, where each rule has the form
S ↪→ s, where S ⊆ F and s ∈ F . We call S the premise of the rule and s its
conclusion. We say that a fact t contributes to a set of facts T in the sequence
B0, ...Bn, if there is a sequence of rule applications r1, ...rm, so that t is in the
premise of r1, the conclusion of r1 is in the premise of r2 etc. and the conclusion
of rm is in T .

Now assume f ∈ B. Since D(y)\{f} → D(y), there must be a rule G ↪→ f
with G ⊆ D(y)\{f}. Let i ∈ [0, n] be the smallest index such that Bi ⊇ G.
f cannot contribute to G, because then there would exist circular rules in the
sense of the preceding lemma. Hence f does not contribute to G. Then B\{f}
is also a base, because the above rule applications can be re-ordered so that f
is derived from Bi. Hence b cannot be a canonical base.
Now we are ready to prove Theorem 2:

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

Proof: Let b be a canonical base of a consistent YAGO ontology y. Let B =
range(b). We define the set

C := D(y) \ {f | D(y)\{f} → D(y)}
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Intuitively speaking, C contains only those facts that cannot be derived from
other facts in D(y). By the previous lemma, B ⊆ C. Assume B ⊂ C, i.e., there
exists a fact f ∈ C, f 6∈ B. Since C ⊆ D(y), f ∈ D(y). Since b is a base, there
exists a rule S ↪→ f for some S ⊆ D(y). Hence f 6∈ C, which is a contradiction.
Hence B = C and every canonical base equals b.

This theorem entails that the canonical base of a YAGO ontology can be
computed by removing all facts that can be derived from other facts in the set
of derivable facts.

B.3 Bound on False Labels

Theorem 3: [Probability of False Labeling ]
With the definitions from Section 4.2.3.2, the probability that a prototype p
receives a positive label in the training phase of the adaptive kNN classifier is
bounded as follows:

P (#EXp > #CEp) ≤ 2e−
1
2 Na2

pf2
p + 2e(2−apfpN)·( 1

2−qp)2

Proof: Our proof makes use of the Chernoff-Hoeffding bound: For a threshold
t ≥ 0 and independent and identically-distributed random variables X1, ..., Xn

that follow a Bernoulli distribution with parameter p ∈ [0, 1], the probability
that the average distance of the variable values to p exceeds t is bounded by

P (|
∑

i

Xi

n
− p| ≥ t) ≤ 2 exp(−2nt2)

This bound can be generalized to any x > pn:

P (
∑n

i=0 Xi ≥ x)

= P (
∑n

i=1
Xi

n − p ≥ x
n − p)

≤ P (|∑n
i=0

Xi

n − p | ≥ x
n − p)

≤ 2 exp(−2n(x/n− p)2)

We model the sequence of patterns as a sequence of N random events. We
consider 3 Bernoulli random variables EX, CE and CAND, which take the
value 1 if the generated pair is an example, a counterexample or a candidate,
respectively. Let Fp be the Bernoulli random variable that indicates whether
the pattern p occurs. We define the following random variables:

EXp = EX · Fp

CEp = CE · Fp

O = 1− EXp − CEp

We write #EXp and #CEp for the total number of examples and counterexam-
ples produced by pattern p, respectively. We write #O = N −#EXp −#CEp

for the number of other events. Now we turn to proving a bound for P (#EXp >
#CEp). We first split this probability into two cases as follows:
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P (#EXp > #CEp)

= P (#EXp > #CEp|#O ≥ k) · P (#O ≥ k)

+ P (#EXp > #CEp|#O < k) · P (#O < k) for any k (∗)
We first analyze the first summand of (∗). Leaving away a factor that is between
0 and 1 yields:

P (#EXp > #CEp|#O ≥ k) · P (#O ≥ k)

≤ P (#O ≥ k)

We choose k = 1
2 · (1 + P (O)) ·N . Since with this choice, k > P (O) ·N , we can

apply the Chernoff-Hoeffding bound:

P (#O ≥ k)

≤ 2 exp(−2N · ( k
N − P (O))2)

= 2 exp(−2N · (1
2 · (1 + P (O))− P (O))2)

= 2 exp(−2N · (1
2 − 1

2P (O))2)

= 2 exp(− 1
2N(1− P (O))2)

Now we turn to the second summand of (∗). Introducing a case analysis yields

P (#EXp > #CEp|#C < k) · P (#O < k)

=
∑k−1

i=0 P (#EXp > N−i
2 |#C = i) · P (#O = i)

Again leaving away factors between 0 and 1 yields

≤ maxi=0...k−1 P (#EXp > N−i
2 |#O = i) ·∑k−1

i=0 P (#O = i)

≤ maxi=0...k−1 P (#EXp > N−i
2 |#O = i)

We observe that the moment we fix #O, we obtain a Binomial distribution for
EX and CE with the parameter

qp =
P (EXp)

P (EXp) + P (CEp)

Since P (EXp) < P (CEp), we have qp < 1
2 and hence N−i

2 > qp(N − i). This
allows us to apply again the Chernoff-Hoeffding bound:

maxi=0...k−1 P (#EXp > N−i
2 |#O = i)

≤ maxi=0...k−1 2 exp(−2(N − i)( 1
2 − qp)2)

= 2 exp(−2(N − (k − 1)) · ( 1
2 − qp)2)

= 2 exp(−2(N − k + 1) · ( 1
2 − qp)2)

= 2 exp(−2(N − 1
2 (1 + P (O))N + 1) · (1

2 − qp)2)

= 2 exp(−(N(1− P (O)) + 2) · ( 1
2 − qp)2)
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Using these two bounds in (∗) and observing that 1− P (O) = apfp yields

P (#EXp > #CEp)

≤ 2 exp(− 1
2N(apfp)2)

+ 2 exp(−(apfpN + 2) · (1
2 − qp)2)

= 2 exp(− 1
2Na2

pf
2
p ) + 2 exp((2− apfpN) · ( 1

2 − qp)2)

B.4 Approximation Guarantee of FMS

Theorem 4: [Approximation Guarantee of the FMS Algorithm]
Independent of the order in which the variables are assigned, the FMS Algo-
rithm has an approximation guarantee of 1/2.

Proof: We are given a weighted MAX SAT problem in the form of a set X
of variables and a set C of weighted clauses. The FMS algorithm constructs
an assignment incrementally by assigning one variable after the other. We
consider two sets, which we construct incrementally as the algorithm assigns
the variables: The set C− ⊆ C will collect unsatisfied clauses, while the set
C+ ⊆ C will collect satisfied clauses. In each step, the algorithm selects an
unassigned variable x ∈ X and chooses the truth value t, if

∑

c ∈ C unit clause
x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

Before t is assigned to x, we update the sets C− and C+ as follows:

C+ := C+ ∪ { c | c ∈ C unsatisfied clause, x ∈ ct}
C− := C− ∪ { c | c ∈ C unit clause, x ∈ c¬t}

Every clause that is added to C+ will be satisfied by the current assignment
of t to x. Every clause in C− will be unsatisfied and cannot be satisfied by
future assignments. We observe that the clauses added to C+ have a higher
total weight than the clauses added to C−. Hence, the update maintains the
following invariance condition:

∑

c ∈ C+

w(c) ≥
∑

c ∈ C−
w(c)

Each clause c ∈ C will be added to either one of the two sets during the course
of the algorithm. Hence, when the algorithm terminates, C+ contains exactly
the satisfied clauses. Thus, the total weight of satisfied clauses achieved by the
algorithm is: ∑

c ∈ C+

w(c)

Now consider an optimal solution vo. Its weight is at most the weight of all
clauses: ∑

c ∈ C
w(c)

Hence the approximation ratio of the FMS Algorithm is
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∑
c∈C+ w(c)∑
c∈Cvo

w(c)

≥
∑

c∈C+ w(c)∑
c∈C w(c)

≥
∑

c∈C+ w(c)∑
c∈C− w(c)+

∑
c∈C+ w(c)

≥
∑

c∈C+ w(c)∑
c∈C+ w(c)+

∑
c∈C+ w(c)

≥ 1
2

B.5 Simple MAX SAT Algorithm

For completeness, we also examine a simple baseline Algorithm for the weighted
MAX SAT problem here.

Algorithm 12: Simple Algorithm
Input: Set of variables X

Set of weighted clauses C
Output:Assignment v for X
1 v := the empty assignment
2 FOR EACH x ∈ X
3 m0 :=

∑ { w(c) | c ∈ C unsatisfied, x ∈ c0}
4 m1 :=

∑ { w(c) | c ∈ C unsatisfied, x ∈ c1}
5 v(x) = [m1 > m0]

This algorithm simply assigns the truth value t to a variable x, if the weight
of unsatisfied clauses where x appears with polarity t exceeds the weight of
unsatisfied clauses where x appears with polarity ¬t. By a similar argument
as given in Appendix B.4, the Simple Algorithm also has an approximation
guarantee of 1/2. However, it can miss the optimal solution for the following
type of weighted MAX SAT problem: The set of variables is X = {X, Y, Z} and
the clauses are

¬X ∨ ¬Y ∨ Z w1 = W
X w2 = W − ε
Y ∨ ¬Z w3 = W

This constellation of clauses is quite frequent in the SOFIE setting, because most
rules induce clauses of the shape ¬X ∨ ¬Y ∨ Z (see Section 5.2.3). An optimal
solution could set X to 1, Y to 0, and Z to 0, gaining 3W − ε. The proposed
algorithm, however, could possibly set X to 0, earning only 2W . One could
think of ordering the variables as it is done in the FMS Algorithm, privileging
variables that exhibit a large difference of clause weights. However, in the
example, X does exhibit the largest difference of clause weights. Still, setting
X to 0 misses the optimal solution. The FMS Algorithm, in contrast, finds the
optimal solution.
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B.6 Safe Variables

Theorem 5: [Safe Truth Values are Safe]
Let X be a set of variables, let v be a partial assignment on X and let C be a
weighted set of clauses. Let x be a safe variable with safe truth value t. Let
vo ⊇ v be an assignment that extends v and maximizes the sum of the weights
of the satisfied clauses. Let v′o be a variant of vo that assigns t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}

Then ∑

c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

Proof: Theorem 5 has first been proven for unweighted MAX SAT in [101] as
the Dominating Unit Clause Rule. [152] provides a proof for weighted MAX
SAT with two literals per clause. The proof can be generalized to other cases
where all clause have the same number of literals. We provide a shorter, general
proof here.

Let X be a set of variables, let v be a partial assignment on X and let C be
a weighted set of clauses. Let x be a safe variable with safe truth value t (see
Definition 27). Let vo ⊇ v be an assignment that extends v and maximizes the
sum of the weights of the satisfied clauses. Let v′o be a variant of vo that assigns
t to x:

v′o = vo \ {x → 1, x → 0} ∪ {x → t}
We have to prove

∑

c ∈ C satisfied in v′o

w(c) ≥
∑

c ∈ C satisfied in vo

w(c)

If vo(x) = t, it follows vo = v′o and the claim follows immediately. Now assume
vo(x) = ¬t. We first observe that the clauses satisfied by v will be satisfied by
both vo and v′o, because vo ⊇ v and v′o ⊇ v. Hence, it suffices to consider only
the clauses that are not satisfied in v. We define C′ to be the set of clauses that
are not satisfied by v. Then we have to prove

∑

c ∈ C′ satisfied in v′o

w(c) ≥
∑

c ∈ C′ satisfied in vo

w(c)

Since vo differs from v′o only in the assignment of x, the clauses that do not
contain x will either be satisfied in both vo and v′o or in none of them:

∑

c ∈ C′ satisfied in v′o
x 6∈ c

w(c) =
∑

c ∈ C′ satisfied in vo
x 6∈ c

w(c)

Hence, we have to prove only
∑

c ∈ C′ satisfied in v′o
x ∈ c

w(c) ≥
∑

c ∈ C′ satisfied in vo
x ∈ c

w(c) (∗)
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We consider the left-hand-side of (∗) and compute a lower bound for it. Given
that v′o(x) = t, v′o will satisfy at least the clauses in which x appears with
polarity t: ∑

c ∈ C′ satisfied in v′o
x ∈ c

w(c) ≥
∑

c ∈ C′
x ∈ ct

w(c)

Now we consider the right-hand-side of (∗). vo will satisfy all clauses that contain
x with polarity ¬t. It cannot satisfy the clauses that contain x with polarity t
and that were unit clauses in v. However, it could potentially satisfy the non-
unit clauses that contain x with polarity t. Thus, we obtain the following upper
bound on the right-hand-side of (∗):

∑

c ∈ C′
x ∈ c¬t

w(c) +
∑

c ∈ C′ non-unit in v
x ∈ ct

w(c) ≥
∑

c ∈ C′ satisfied in vo
x ∈ c

w(c)

Using these two bounds in (∗), we have to prove
∑

c ∈ C′
x ∈ ct

w(c) ≥
∑

c ∈ C′
x ∈ c¬t

w(c) +
∑

c ∈ C′ non-unit in v
x ∈ ct

w(c)

Subtracting the second summand on both sides yields
∑

c ∈ C′ unit clause in v
x ∈ ct

w(c) ≥
∑

c ∈ C′
x ∈ c¬t

w(c)

This is the definition of x being a safe variable with safe truth value t.

Asymmetry. Note the asymmetry in the rule for safe variables: To set a vari-
able x to a truth value t, the rule considers the unit clauses where x appears
with polarity t and compares them to the unsatisfied clauses where x appears
with polarity ¬t. One might be tempted to compare just the unsatisfied clauses
where x appears with polarity t to the unsatisfied clauses where x appears with
polarity ¬t, no matter whether the clauses are unit clauses or not. This algo-
rithm, however, performs worse than the FMS Algorithm in certain situations
that are important in the SOFIE setting, see Section B.5.

B.7 Approximation Guarantee of FMS∗

Theorem 6: [Approximation Guarantee of the FMS∗ Algorithm]
The FMS∗ Algorithm has an approximation guarantee of 1/2.

Proof: We are given a weighted MAX SAT problem in the form of a set X
of variables and a set C of weighted clauses. We have to prove that the FMS∗

algorithm maintains an approximation guarantee of 1/2. As in the preceding
proof in Appendix B.4 for Theorem 4, we construct two sets C− ⊆ C and C+ ⊆ C,
which are updated after every step of the algorithm. In each step, the algorithm
will assign a truth value t to a variable x (either by DUC Propagation or by the
FMS Algorithm). As in the previous proof, we update the sets C− and C+ as
follows before x is assigned:
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C− := C− ∪ { c | c ∈ C unsatisfied clause, x ∈ c¬t}
C+ := C+ ∪ { c | c ∈ C unit clause, x ∈ ct}

The variable x can be assigned in two ways:

1. x can be assigned by the FMS Algorithm. Then,
∑

c ∈ C unit clause
x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

2. x can be assigned by DUC Propagation. Then, by the definition of DUC
Propagation,

∑

c ∈ C unit clause
x ∈ ct

w(c) ≥
∑

c ∈ C unsatisfied
x ∈ c¬t

w(c)

Thus, in both cases
∑

c ∈ C unsatisfied clause
x ∈ ct

w(c) ≥
∑

c ∈ C unit clause
x ∈ c¬t

w(c)

Hence, the following invariance condition holds throughout the course of the
algorithm: ∑

c ∈ C+

w(c) ≥
∑

c ∈ C−
w(c)

As shown in Appendix B.4, this entails an approximation guarantee of 1/2.
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[87] M. Krötzsch, D. Vrandečić, M. Völkel, H. Haller, and R. Studer. Semantic
Wikipedia. volume 5, pages 251–261, Amsterdam, The Netherlands, 2007.
Elsevier Science Publishers B. V.

[88] S. Liu, F. Liu, C. Yu, and W. Meng. An effective approach to document
retrieval via utilizing WordNet and recognizing phrases. In Proceedings of
the Annual International ACM SIGIR conference on Research and devel-
opment in information retrieval (SIGIR), pages 266–272, New York, NY,
USA, 2004. ACM.

[89] G. Luo, C. Tang, and Y. li Tian. Answering relationship queries on the
web. In Proceedings of the International Conference on World Wide Web
(WWW), pages 561–570, New York, NY, USA, 2007. ACM.

[90] A. Maedche and S. Staab. Discovering conceptual relations from text. In
Proceedings of the European Conference on Artificial Intelligence (ECAI),
Amsterdam, The Netherlands, 2000. IOS Press.

[91] A. Maedche and S. Staab. Learning ontologies for the Semantic Web. In
Proceedings of the Workshop on the Semantic Web at WWW, 2001.

[92] A. Maedche and S. Staab. Ontology learning from text. In Proceedings of
the International Conference on Applications of Natural Language to In-
formation Systems-Revised Papers, page 364, London, UK, 2001. Springer.

http://www.brightbyte.de�


Bibliography 179

[93] A. Maier, H.-P. Schnurr, and Y. Sure. Ontology-based information in-
tegration in the automotive industry. In Proceedings of the International
Semantic Web Conference (ISWC), volume 2870 of Lecture Notes in Com-
puter Science, pages 897–912. Springer, 2003.

[94] C. D. Manning and H. Schutze. Foundations of Statistical NLP. MIT
Press, Cambridge, MA, USA, 1999.

[95] C. Matuszek, J. Cabral, M. Witbrock, and J. Deoliveira. An introduction
to the syntax and content of cyc. In Proceedings of the AAAI Spring
Symposium on Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and Question Answering,
pages 44–49, Menlo Park, CA, USA, 2006. AAAI Press.

[96] Merriam-Webster. Merriam-Webster’s Collegiate Dictionary. Merriam-
Webster, 2003.

[97] D. N. Milne, I. H. Witten, and D. M. Nichols. A knowledge-based search
engine powered by Wikipedia. In Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM), pages
445–454, New York, NY, USA, 2007. ACM.

[98] R. Montague. Universal grammar. In Formal Philosophy. Selected Papers
of Richard Montague. Yale University Press, 1974.

[99] Network Working Group. Uniform Resource Identifier (URI): Generic
Syntax, 2005. http://tools.ietf.org/html/rfc3986.

[100] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object re-
trieval. In Proceedings of the International Conference on World Wide
Web (WWW), pages 81–90, New York, NY, USA, 2007. ACM.

[101] R. Niedermeier and P. Rossmanith. New upper bounds for maximum
satisfiability. Journal of Algorithms, 36:2000, 2000.

[102] I. Niles and A. Pease. Towards a standard upper ontology. In Proceed-
ings of the international conference on Formal Ontology in Information
Systems, pages 2–9, New York, NY, USA, 2001. ACM.

[103] N. F. Noy, A. Doan, and A. Y. Halevy. Semantic integration. AI Magazine,
26(1):7–10, 2005.

[104] A. Okumura and E. Hovy. Building Japanese-English dictionary based on
ontology for machine translation. In HLT ’94: Proceedings of the workshop
on Human Language Technology, pages 141–146, Morristown, NJ, USA,
1994. Association for Computational Linguistics.

[105] P. Pantel and M. Pennacchiotti. Espresso: leveraging generic patterns for
automatically harvesting semantic relations. In Proceedings of the Interna-
tional Conference on Computational Linguistics (ICCL), pages 113–120,
Morristown, NJ, USA, 2006. Association for Computational Linguistics.

[106] P. F. Patel-Schneider and I. Horrocks. OWL 1.1 Web Ontology Language.
http://www.w3.org/Submission/owl11-overview/.

http://tools.ietf.org/html/rfc3986�
http://www.w3.org/Submission/owl11-overview/�


180 Bibliography

[107] S. P. Ponzetto and M. Strube. Deriving a Large-Scale Taxonomy from
Wikipedia. In Proceedings of the American National Conference on Arti-
ficial Intelligence (AAAI), pages 1440–1445, Menlo Park, CA, USA, 2007.
AAAI Press.

[108] L. Predoiu. Probabilistic information integration and retrieval in the Se-
mantic Web. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee,
L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, G. Schreiber, and
P. Cudr-Mauroux, editors, Proceedings of the International Semantic Web
Conference (ISWC), volume 4825 of Lecture Notes in Computer Science,
pages 930–934, Berlin, Heidelberg, November 2007. Springer.

[109] C. Ramakrishnan, K. Kochut, and A. P. Sheth. A Framework for Schema-
Driven Relationship Discovery from Unstructured Text. In I. F. Cruz,
S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold,
and L. Aroyo, editors, Proceedings of the International Semantic Web
Conference (ISWC), volume 4273 of Lecture Notes in Computer Science,
pages 583–596. Springer, 2006.

[110] V. Raman, B. Ravikumar, and S. S. Rao. A simplified np-complete maxsat
problem. Information Processing Letters, 65(1):1–6, 1998.

[111] D. Ravichandran and E. Hovy. Learning surface text patterns for a Ques-
tion Answering system. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages 41–47, Morristown,
NJ, USA, 2001. Association for Computational Linguistics.

[112] M. Richardson and P. Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2), 2006.

[113] E. Riloff. Automatically Generating Extraction Patterns from Untagged
Text. Proceedings of the Thirteenth National Conference on Artificial
Intelligence, 2:1044–1049, 1996.

[114] E. Rosch, C. Mervis, W. Gray, D. Johnson, and P. Boyes-Bream. Basic
objects in natural categories. Cognitive Psychology, pages 382–439, 1976.

[115] M. Ruiz-Casado, E. Alfonseca, and P. Castells. Automatic Extraction of
Semantic Relationships for WordNet by Means of Pattern Learning from
Wikipedia. In Proceedings of the Applications of Natural Language to Data
Bases (NLDB), volume 3513 of Lecture Notes in Computer Science, pages
67–79. Springer, 2005.

[116] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach.
Prentice Hall, 2002.

[117] H. Saggion, A. Funk, D. Maynard, and K. Bontcheva. Ontology-based
information extraction for business intelligence. In Proceedings of the In-
ternational Semantic Web Conference (ISWC), volume 4825 of Lecture
Notes in Computer Science, pages 843–856. Springer, 2007.

[118] S. Sarawagi. Information Extraction. Foundations and Trends in
Databases, 2(1), 2008.



Bibliography 181

[119] D. L. Schacter. Implicit memory: History and current status. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 13(3):501–
518, 1987.

[120] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative in-
formation extraction using datalog with embedded extraction predicates.
In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 1033–1044. VLDB Endowment, 2007.

[121] H. U. Simon. General bounds on the number of examples needed for
learning probabilistic concepts. In Proceedings of the Annual Conference
on Computational Learning Theory (COLT), pages 402–411, New York,
NY, USA, 1993. ACM Press.

[122] D. Sleator and D. Temperley. Sleator parsing english with a link grammar.
International Workshop on Parsing Technologies, 1993.

[123] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for auto-
matic hypernym discovery. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Proceedings of the Conference on Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1297–1304. MIT Press, Cambridge, MA,
2005.

[124] R. Snow, D. Jurafsky, and A. Y. Ng. Semantic taxonomy induction from
heterogenous evidence. In Proceedings of the International Conference on
Computational Linguistics (ICCL), pages 801–808, Morristown, NJ, USA,
2006. Association for Computational Linguistics.

[125] S. Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, pages 233–272, 1999.

[126] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. Crystal: Inducing a
conceptual dictionary. Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1314–1319, 1995.

[127] M.-H. Song, S.-Y. Lim, D.-J. Kang, and S.-J. Lee. Automatic classifica-
tion of web pages based on the concept of domain ontology. Asia-Pacific
Software Engineering Conference, pages 645–651, 2005.

[128] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks/Cole, 2000.

[129] S. Staab and R. Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer, 2004.

[130] J. Stoyanovich, S. Bedathur, K. Berberich, and G. Weikum. Entityauthor-
ity: Semantically enriched graph-based authority propagation. In Proceed-
ings of the International Workshop on the Web and Databases (WebDB),
pages 1–6, Beijing, China, 2007.

[131] F. M. Suchanek. Representing Ontological Structures in CLOS, Java
and FAST. Bachelor’s Thesis, University of Osnabrueck, Germany, 2003.
Available at http://suchanek.name.

http://suchanek.name�


182 Bibliography

[132] F. M. Suchanek. Ontological reasoning for natural language understand-
ing. Master’s thesis, Saarland University, Germany, 2005.

[133] F. M. Suchanek, G. Ifrim, and G. Weikum. Combining linguistic and
statistical analysis to extract relations from web documents. In T. Eliassi-
Rad, L. Ungar, M. Craven, and D. Gunopulos, editors, ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD),
pages 712–717, Philadelphia, PA, USA, 2006. ACM.

[134] F. M. Suchanek, G. Ifrim, and G. Weikum. LEILA: Learning to extract in-
formation by linguistic analysis. In P. Buitelaar, P. Cimiano, and B. Loos,
editors, Proceedings of the 2nd Workshop on Ontology Learning and Pop-
ulation (OLP2) at COLING/ACL 2006, pages 18–25, Sydney, Australia,
2006. Association for Computational Linguistics.

[135] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A core of semantic
knowledge - unifying WordNet and Wikipedia. In C. L. Williamson, M. E.
Zurko, and P. J. Patel-Schneider, Peter F. Shenoy, editors, Proceedings of
the International Conference on World Wide Web (WWW), pages 697–
706, Banff, Canada, 2007. ACM.

[136] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO - A Large Ontol-
ogy from Wikipedia and WordNet. Elsevier Journal of Web Semantics,
6(3):203–217, September 2008.

[137] F. M. Suchanek, M. Vojnovic, and D. Gunawardena. Social Tags: Meaning
and Suggestions. In Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM), New York, NY, USA,
2008. ACM. To appear.

[138] H. Tanev and B. Magnini. Weakly supervised approaches for ontology
population. In P. Buitelaar and P. Cimiano, editors, Ontology Learning
and Population: Bridging the Gap between Text and Knowledge, number
167, pages 129–143. IOS Press, 2008.

[139] M. Theobald, R. Schenkel, and G. Weikum. TopX & XXL at INEX 2005
(ad-hoc track). In N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, edi-
tors, Advances in XML Information Retrieval and Evaluation, 4th Inter-
national Workshop of the Initiative for the Evaluation of XML Retrieval,
INEX 2005, volume 3977 of Lecture Notes in Computer Science, pages
282–295, Dagstuhl Castle, Germany, 2006. Springer.

[140] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets,
approximation, and linear programming. SIAM Journal of Computing,
29(6):2074–2097, 2000.

[141] M. Vargas-Vera, E. Motta, and J. Domingue. AQUA: An ontology-driven
question answering system. In M. T. Maybury, editor, New Directions in
Question Answering, pages 53–57, Menlo Park, CA, USA, 2003. AAAI
Press.
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