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ABSTRACT
This paper presents SOFIE, a system for automated on-
tology extension. SOFIE can parse natural language docu-
ments, extract ontological facts from them and link the facts
into an ontology. SOFIE uses logical reasoning on the exist-
ing knowledge and on the new knowledge in order to disam-
biguate words to their most probable meaning, to reason on
the meaning of text patterns and to take into account world
knowledge axioms. This allows SOFIE to check the plau-
sibility of hypotheses and to avoid inconsistencies with the
ontology. The framework of SOFIE unites the paradigms of
pattern matching, word sense disambiguation and ontolog-
ical reasoning in one unified model. Our experiments show
that SOFIE delivers high-quality output, even from unstruc-
tured Internet documents.

Categories and Subject Descriptors
H.1. [Information Systems]: Models and Principles

General Terms
Algorithms, Design

Keywords
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1. INTRODUCTION
1.1 Background and Motivation

Recently, several projects such as YAGO [37, 38],
Kylin/KOG [42, 43], and DBpedia [4], have successfully con-
structed large ontologies by using Information Extraction
(IE).1 These ontologies contain millions of entities and tens
of millions of facts (i.e., instances of relations between enti-
ties). A hierarchy of classes gives them a clean taxonomic
structure. Empirical assessment has shown that these ap-
proaches can achieve an accuracy of over 95 percent.

The focus in these projects has been on extracting infor-
mation from the semi-structured components of Wikipedia
(such as infoboxes and the category system). In order to
achieve an even broader coverage, new sources must be
brought into scope. One particularly rich source are natural-
language documents, such as news articles, biographies, sci-
entific publications, and also the full text of Wikipedia ar-

1In this paper, ontology means a knowledge base of semantic
facts.
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ticles. But so far even the best IE methods have typically
achieved only 80 percent accuracy (or less) in such settings.
While this may be good enough for some applications, the
error rate is unacceptable for an ontological knowledge base.
The key idea to overcome this dilemma, pursued in this pa-
per, is to leverage the existing ontology for its own growth.
We propose to use trusted facts as a basis for generating
good text patterns. These patterns guide the IE from nat-
ural language text. The resulting new hypotheses are scru-
tinized with regard to their consistency with the already
known facts. This will allow extracting ontological facts of
high quality even from unstructured text documents.

1.2 Example Scenario
Assume that a knowledge-gathering system encounters

the following sentence:

Einstein attended secondary school in Germany.

Knowing that “Einstein” is the family name of Albert Ein-
stein and knowing that Albert Einstein was born in Ger-
many, the system might deduce that “X attended secondary

school in Y” is a good indicator of X being born in Y . Now
imagine the system finds the sentence

Elvis attended secondary school in Memphis.

Many people have called themselves “Elvis”. In the present
case, assume that the context indicates that Elvis Presley is
meant. But the system already knows (from the facts it has
already gathered) that Elvis Presley was born in the State
of Mississippi. Knowing that a person can only be born in
a single location and knowing that Memphis is not located
in Mississippi, the system concludes that the pattern “X at-

tended secondary school in Y” cannot mean that X was born in
Y . Re-considering the first sentence, it finds that “Einstein”
could have meant Hermann Einstein instead. Hermann was
the father of Albert Einstein. Knowing that Hermann went
to school in Germany, the system figures out that the pat-
tern “X attended secondary school in Y” rather indicates that
someone went to school in some place. Therefore, the sys-
tem deduces that Elvis went to school in Memphis.2 This is
the kind of “intelligent” IE that we pursue in this paper.

1.3 Contribution
The example scenario shows that extracting new facts

that are consistent with an existing ontology entails several,
highly intertwined problems:

Pattern selection: Facts are extracted from natural lan-
guage documents by finding meaningful patterns in the text.
2This is actually true. Albert Einstein went to secondary
school in Switzerland, not Germany.



The accuracy of this technique critically depends on having
a variety of meaningful patterns. It can be further boosted
if counter-productive patterns are excluded systematically
[36]. Thus, discovering and assessing patterns is a key task
of IE.

Entity disambiguation: For ontological IE, the words
or phrases from the text have to be mapped to entities in the
ontology. In many cases, this mapping is ambiguous. The
word “Paris”, e.g., can denote either the French capital or
a city in Texas. Since many location names, companies, or
product names are ambiguous, finding the intended meaning
of a word is often a difficult task.

Consistency checking: The newly extracted facts have
to be logically consistent with the existing ontology. Con-
sistency checking is an interesting problem by itself. In our
case, the problem is particularly challenging, because a large
set of IE-provided noisy candidates has to be scrutinized
against a trusted core of facts.

This paper presents a new approach to these problems.
Rather than addressing each of them separately, we provide
a unified model for ontology-oriented IE that solves all three
issues simultaneously. To this end, we cast known facts, hy-
potheses for new facts, word-to-entity mappings, gathered
sets of patterns, and a configurable set of semantic con-
straints into a unified framework of logical clauses. Then, all
three problems together can be seen as a Weighted MAX-
SAT problem, i.e., as the task of identifying a maximal set of
consistent clauses. The approach is fully implemented in a
system for knowledge gathering and ontology maintenance,
coined SOFIE. The salient properties of SOFIE and novel
research contributions of this paper are the following:

• a new model for consistent growth of a large ontology;

• a unified method for pattern selection, entity disam-
biguation, and consistency checking;

• an efficient algorithm for the resulting Weighted MAX-
SAT problem that is tailored to the specific task of
ontology-centric IE;

• experiments with a variety of real-life textual and semi-
structured sources to demonstrate the scalability and
high accuracy of the approach.

The rest of the paper is organized as follows. Section 2
discusses related work, Sections 3 and 4 present the SOFIE
model and its implementation, and Section 5 discusses ex-
periments.

2. RELATED WORK
Fact Gathering. Unlike manual approaches such as

WordNet [18], Cyc [23] or SUMO [26], IE approaches seek
to extract facts from text documents automatically. They
encompass a wide variety of models and methods, includ-
ing linguistic, learning, and rule-based approaches [32]. The
methods often start with a given set of target relations and
aim to collect as many of their instances (the facts) as pos-
sible. These facts can serve for the purposes of ontology
population or ontology learning.

DIPRE [10], Snowball [2] and KnowItAll [17] are among
the most prominent projects of this kind. They harness
manually specified seed facts of a given relation (e.g., a small
number of company-city pairs for a headquarter relation) to

find textual patterns that could possibly express the relation,
use statistics to identify the best patterns, and then find new
facts from occurrences of these patterns. Leila [36] has
further improved this method by using both examples and
counterexamples as seeds, in order to generate more robust
patterns. This notion of counterexamples is also adopted by
SOFIE. Blohm et al. [9, 8] provide enhanced methods for
selecting the best patterns.

TextRunner [5] pursues the even more ambitious goal of
extracting all instances of all meaningful relations from Web
pages, a paradigm referred to as Open IE [16]. However, all
of these projects extract merely non-canonical facts. This
means (1) that they do not disambiguate words to entities
and (2) that they do not extract well-defined relations (but,
e.g., verbal phrases). In contrast, SOFIE delivers canonical-
ized output that can be directly used in a formal ontology.

Wikipedia-centric Approaches. Recently, a number
of projects have applied IE with specific focus on Wikipedia:
DBpedia [4], work by Ponzetto et. al. [27], Kylin/KOG [42,
43], and our own YAGO project [37, 38]. While Ponzetto
et al. focus on extracting a taxonomic hierarchy from
Wikipedia, DBpedia and YAGO construct full-fledged on-
tologies from the semi-structured parts of Wikipedia (i.e.,
from infoboxes and the category system). SOFIE, on the
other hand, can process the full body of Wikipedia articles.
It is not even tied to Wikipedia but can handle arbitrary
Web pages and natural-language texts.

Kylin goes beyond the IE in DBpedia and YAGO by ex-
tracting information not just from the infoboxes and cate-
gories, but also from the full text of the Wikipedia articles.
KOG (Kylin Ontology Generator) builds on Kylin’s output,
unifies different attribute names, derives type signatures,
and (like YAGO) maps the entities onto the WordNet taxon-
omy, using Markov Logic Networks [31]. KOG builds on the
class system of YAGO and DBpedia (along with the entities
in each class) to generate a taxonomy of classes. Both Kylin
and KOG are customized and optimized for Wikipedia arti-
cles, while this paper aims at IE from arbitrary Web sources.

Wang et al [41] have presented an approach called
Positive-Only Relation Extraction (PORE). PORE is a
holistic pattern matching approach, which has been im-
plemented for relation-instance extraction from Wikipedia.
Unlike the approach presented in this paper, PORE does
not incorporate world knowledge, which would be necessary
for ontology building and extension.

Declarative IE. Shen et al. [33] propose a framework
for declarative IE, based on Datalog. By encapsulating the
non-declarative code into predicates, the framework pro-
vides a clean model for rule-based information extraction
and allows consistency constraints and checks against ex-
isting facts (e.g., for entity resolution). The approach has
been successfully applied for building and maintaining com-
munity portals like DBlife [15], while the universal ontologies
studied in this paper are not in the scope of the work.

Reiss et al. [30] pursue a declarative approach that is sim-
ilar to that of [33], but use database-style algebraic operator
trees rather than Datalog. The approach greatly simplifies
the manageability of large-scale IE tasks, but does not ad-
dress any ontology-centered issues.

Poon et al. [28] use Markov Logic networks [31] for IE.
Their approach can simultaneously tokenize bibliographic
entries and reconcile the extracted entities. In Markov Logic,
first-order formulas that express properties of patterns and



hypotheses are grounded and translated into a Markov ran-
dom field that defines a clique-factorized joint probability
distribution for the entirety of hypotheses. Inferencing pro-
cedures over such structures can compute probabilities for
the truth of the various hypotheses. Our approach has algo-
rithmic building blocks in common with [28], but follows a
very different architectural paradigm. Rather than perform-
ing probabilistic inferences on the extracted entities, our ap-
proach aims to identify the best subset of hypotheses that is
consistent with the textual patterns, the existing ontology
and the semantic constraints.

Ontology Integration and Extension. The goal of the
current paper is to provide means for automatically extend-
ing an ontology by new facts found by IE methods – while
preserving the ontology’s consistency. This setting resem-
bles the issue of ontology integration: merging two or more
ontologies in a consistent manner [34, 40]. However, our
setting is much more difficult, because the new facts are ex-
tracted from highly noisy text and Web sources rather than
from a second, already formalized and clean, ontology.

Boer et. al. [13] present an approach for extending a
given ontology, based on a co-occurrence analysis of entities
in Web documents. However, they rely on the existence of
documents that list instances of a certain relation. While
these documents exist for some relations, they do not exist
for many others; this limits the applicability of the approach.

Banko et al. pursue a similar goal called Lifelong Learn-
ing [6], implemented in the Alice system. Alice is based
on a core ontology and aims to extend it by new facts us-
ing statistical methods. The approach has not been tried
out with individual entities (in canonicalized form). More-
over, it lacks logical reasoning capabilities that are crucial
for ensuring the consistency of the automatically extended
ontology.

We believe that SOFIE is the very first approach to
the ontology-extension problem that integrates logical con-
straint checking with pattern-based IE, and is thus able
to provide ontological facts about disambiguated entities in
canonical form.

3. MODEL
3.1 Statements

Facts and Hypotheses. A statement is a tuple of a re-
lation and a pair of entities. A statement has an associated
truth value of 1 or 0. We denote the truth value of a state-
ment in brackets:

bornIn(AlbertEinstein, Ulm)[1]

A statement with truth value 1 is called a fact. A statement
with an unknown truth value is called a hypothesis.

Ontological Facts. SOFIE is designed to extend an ex-
isting ontology. In principle, SOFIE could work with any
ontology that can be expressed as a set of facts. For our
experiments, we used the YAGO ontology [37], which can
be expressed as follows:

type(AlbertEinstein, Physicist)[1]
subclassOf (Physicist, Scientist)[1]
bornIn(AlbertEinstein, Ulm)[1]
...

Wics. As a knowledge gathering system, SOFIE has to
address the problem that most words have several meanings.
The word“Java”, for example, can refer to the programming

language or to the Indonesian island.3 In a given context,
however, a word is very likely to have only one meaning
[19]. We define a word in context (wic) as a pair of a word
and a context. For us, the context of a word simply is the
document in which the word appears. Thus, a wic is a pair
of a word and a document identifier.4 We use the notation
word@doc, so that, e.g., the word “Java” in the document
D8 is denoted by Java@D8. We assume that all occurrences
of a wic have the same meaning.

Textual Facts. SOFIE has a component for extracting
surface information from a given text corpus. This informa-
tion also takes the form of facts. One type of facts makes
assertions about the occurrences of patterns. For example,
the system might find that the pattern “X went to school in Y”

occurred with the wics Einstein@D29 and Germany@D29.
This results in the following fact:

patternOcc(“X went to school in Y”,
Einstein@D29, Germany@D29)[1]

Another type of facts states how likely it is, from a linguis-
tic point of view, that a wic refers to a certain entity. We
call this likeliness value the disambiguation prior. One way
of computing a disambiguation prior is to exploit context
statistics (see Section 4). Here, we just give an example for
facts about the disambiguation prior of the wic Elvis@D29:

disambPrior(Elvis@D29, ElvisPresley, 0.8)[1]
disambPrior(Elvis@D29, ElvisCostello, 0.2)[1]

Hypotheses. Based on the ontological facts and the tex-
tual facts, SOFIE forms hypotheses. These hypotheses can
concern the disambiguation of wics. For example, SOFIE
can hypothesize that Java@D8 should be disambiguated as
the programming language Java:

disambiguateAs(Java@D8, JavaProgrammingLanguage)[?]

We use a question mark to indicate the unknown truth
value of the statement. SOFIE can also hypothesize about
whether a certain pattern expresses a certain relation:

expresses(“X was born in Y”, bornInLocation)[?]

Apart from textual hypotheses, SOFIE also forms hypothe-
ses about potential new facts. For example, SOFIE could
establish the hypothesis that Java was developed by Mi-
crosoft:

developed(Microsoft, JavaProgrammingLanguage)[?]

Unified Model. By casting both the ontology and the
linguistic analysis of the documents into statements, SOFIE
unifies ontology-based reasoning and information extraction:
everything takes the form of statements. SOFIE will aim to
figure out which hypotheses are likely to be true. For this
purpose, SOFIE uses rules.

3.2 Rules
Literals and Rules. SOFIE will use logical knowledge

to figure out which hypotheses are likely to be true. This
knowledge takes the from of rules. Rules are based on liter-
als. A literal is a statement that can have placeholders for

3This is the problem of polysemy, where one word refers
to multiple entities. Conversely, if one entity has multiple
names (synonymy) this does not pose a problem, as SOFIE
maps words to entities.
4A wic is related to but different from a concordance aka.
KWIC (keyword in context) [24].



the relation or some of the entities, e.g., bornIn(X, Ulm). A
rule is a propositional first order logic formula over literals,
e.g., bornIn(X, Ulm) ⇒ ¬ bornIn(X, Timbuktu). As in
Prolog and Datalog, all placeholders are implicitly univer-
sally quantified. We postpone the discussion of the formal
semantics of the rules to Section 3.3 and stay with an intu-
itive understanding of rules for the moment.

Grounding. A ground instance of a literal is a statement
obtained by replacing the placeholders by entities. A ground
instance of a rule is a rule obtained by replacing all place-
holders by entities. All occurrences of a placeholder must
be replaced by the same entity. For example, the following
is a ground instance of the rule mentioned above:

bornIn(Einstein, Ulm) ⇒ ¬ bornIn(Einstein, Timbuktu)

SOFIE’s Rules. We have developed a number of rules for
SOFIE. One of the rules states that a functional relation
(e.g., the bornIn relation) should not have more than one
argument for a given first argument:

R(X, Y )
∧ type(R, function)
∧ different(Y, Z)
⇒ ¬ R(X, Z)

The rule guarantees, for example, that people cannot be
born in more than one place. Since disambiguatedAs is also
a functional relation, the rule also guarantees that one wic
is disambiguated to at most one entity. There are also other
rules, some of which concern the textual facts. One rule as-
serts that if pattern P occurs with entities x and y and if
there is a relation r such that r(x, y), then P expresses r.
For example, if the pattern “X was born in Y” appears with
Albert Einstein and his true location of birth, Ulm, then it
is likely that “X was born in Y” expresses the relation bornIn-
Location. A naive formulation of this rule looks as follows:

patternOcc(P, X, Y)
∧ R(X, Y )
⇒ expresses(P, R)

We need to take into account, however, that patterns hold
between wics, whereas facts hold between entities. Our
model allows incorporating this constraint in an elegant way:

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ R(X, Y )
⇒ expresses(P, R)

There is a dual version of this rule: If the pattern expresses
the relation r, and the pattern occurs with two entities x
and y, and x and y are of the correct types, then r(x, y):

patternOcc(P, WX, WY)
∧ disambiguatedAs(WX, X)
∧ disambiguatedAs(WY, Y )
∧ domain(R, DOM)
∧ type(X, DOM)
∧ range(R, RAN)
∧ type(Y, RAN)
∧ expresses(P, R)
⇒ R(X, Y )

By this rule, the pattern comes into play only if the two
entities are of the correct type. Thus, the very same pattern

can express different relations if it appears with different
types. Another rule makes sure that the disambiguation
prior influences the choice of disambiguation:

disambPrior(W, X, N)
⇒ disambiguatedAs(W, X)

Softness. The rules for SOFIE have to be designed manu-
ally. We believe that the rules we provided should be general
enough to be useful with a large number of relations. More
(relation-specific) rules can be added. In general, it is im-
possible to satisfy all of the these rules simultaneously. For
example, as soon as there exist two disambiguation priors
for the same wic, both will enforce a certain disambigua-
tion. Two disambiguations, however, contradict the func-
tional constraint of disambiguatedAs. This is why certain
rules will have to be violated. Some rules are less important
than others. For example, if a strong disambiguation prior
requires a wic to be disambiguated as X, while a weaker
prior desires Y , then X should be given preference – un-
less other constraints favor Y . This is why a sophisticated
approach is needed to compute the most likely hypotheses.

3.3 MAX-SAT Model
SOFIE aims to find the hypotheses that should be ac-

cepted as true facts so that a maximal number of rules are
satisfied. The problem can be cast into a maximum satis-
fiability problem (MAX SAT problem). In our setting, the
variables are the hypotheses and the rules are transformed
into propositional formulae on them. This view would allow
violating some rules, but it would not allow weighting them.
Therefore, we consider here a setting where the formulae
are weighted. One approach for dealing with weighted first
order logic formulae is Markov Logic [31]. Markov Logic,
however, would lift the problem to a more complex level
(that of inferring probabilities), usually involving heavy ma-
chinery. Furthermore, Markov Logic Networks might not be
able to deal efficiently with the millions of facts that YAGO
provides. Fortunately, there is a simpler option, which also
allows dealing with weighted logic formulae: the weighted
maximum satisfiability setting or Weighted MAX-SAT.

Weighted MAX-SAT. The weighted MAX-SAT prob-
lem is based on the notion of clauses:

Definition 1: [Clause]
A clause C over a set of variables X consists of
(1) a positive literal set c1 = {x1

1, . . . , x
1
n} ⊆ X

(2) a negative literal set c0 = {x0
1, . . . , x

0
m} ⊆ X

A weighted clause over X is a clause C over X with an
associated weight w(C) ∈ R+.

Given a clause C over a set X of variables, we say that a
variable x ∈ X appears with polarity p in C, if x ∈ Cp. The
semantics of clauses is given by the notion of assignments:

Definition 2: [Assignment ]
An assigment for a set X of variables is a function v :
X → {0, 1}. A partial assignment for X is a partial
function v : X ⇀ {0, 1}. A (partial) assignment for X
satisfies a clause C over X , if there is an x ∈ X , such
that x ∈ Cv(x).

Definition 3: [Weighted MAX SAT ]
Given a set C of weighted clauses over a set X of variables,
the weighted MAX SAT problem is the task of finding an
assignment v for X that maximizes the sum of the weights
of the satisfied clauses:∑

c ∈ C is satisfied in v w(c)



An assignment that maximizes the sum of the satisfied
clauses in a weighted MAX SAT problem is called a solution
of the problem.

Mapping SOFIE’s Rules into Clauses. The task that
SOFIE faces is, given a set of facts, a set of hypotheses and
a set of rules, finding truth values for the hypotheses so that
a maximum number of rules is satisfied. This problem can
be cast into a weighted MAX-SAT problem as follows. We
assume a finite set of rules, a finite set of ontological facts,
and a finite set of textual facts. Together they implicitly de-
fine a finite set of entities. We map this model into clauses
as follows:

1. Each rule is syntactically replaced by all of its
grounded instances. Since the set of entities is finite,
the set of ground instances is finite as well. (Section
4 will discuss efficient techniques for performing this
lazily on demand, avoiding many explicit groundings.)

2. Each ground instance is transformed into one or mul-
tiple clauses as usual in propositional logic. The fol-
lowing rewriting template covers all rules introduced in
Section 3.2: p1∧. . .∧pn ⇒ c  (¬p1∨. . .∨¬pn∨c)

3. The set of all statements that appear in the clauses
becomes the set of variables. Note that these state-
ments will include not only the ontological facts and
the textual facts, but also all hypotheses that the rules
construct from them.

These steps leave us with a set of variables and a set of
clauses.

Weighting. The clauses about the disambiguation of
wics and the quality of patterns may possibly be violated.
These are the clauses that contain the relation patternOcc or
the relation disambPrior (see Section 3.2). We assign them
a fixed weight w. For the disambPrior facts, we multiply
w with the disambiguation prior, so that the prior analysis
is reflected in the weight. The other clauses should not be
violated. We assign them a fixed weight W . W is chosen so
large that even repeated violation (say, hundred-fold) of a
clause with weight w does not sum up to the violation of a
clause with weight W . This way, every clause has a weight
and we have transformed the problem into a weighted MAX-
SAT problem.

Ockham’s Razor. The optimal solution of the weighted
MAX-SAT problem shall reflect the optimal assignment of
truth values to the hypotheses. In practice, however, there
are often multiple optimal solutions. In particular, some op-
timal solutions may make hypotheses true even if there is no
evidence for them. For example, an optimal solution may
assert that a pattern expresses a relation even if there are
no examples for the pattern. This is because a rule of the
form A ⇒ B can always be satisfied by setting B to true,
even if A (the evidence) is false. To avoid this phenomenon,
we give preference to the solution that makes the least num-
ber of hypotheses true.5 We encode this desideratum in our
weighted MAX-SAT problem by adding a clause (¬h) with
a small weight ε for each hypothesis h. This ensures that a
hypothesis is made true only if there is evidence for it. Given
that the number of hypotheses is huge, the desired solution

5This principle is known as Ockham’s Razor, after the 14th-
century English logician William of Ockham. In our setting
(as in reality), omitting this principle leads to random hy-
potheses being taken for true.

will make only a very small portion of the hypotheses true.
The exact value for ε is not essential. Given two solutions of
otherwise equal weight, ε just serves to choose the one that
makes the least number of hypotheses true.

4. IMPLEMENTATION
SOFIE’s main components are the pattern-extraction en-

gine and the Weighted MAX-SAT solver. They are de-
scribed in the next two subsections, followed by an explana-
tion of how everything is put together into the overall SOFIE
system.

4.1 Pattern Extraction
Pattern Occurrences. The pattern extraction compo-

nent takes a document and produces all patterns that appear
between any two entity names. First, the system tokenizes
the document, splitting the document into short strings (to-
kens). The tokenization identifies and normalizes numbers,
dates and, in Wikipedia articles, also Wikipedia hyperlinks.
The tokenization employs lists (such as a list of stop words
and a list of nationalities) to identify known words. The tok-
enization also identifies strings that must be person names.6

The output of this procedure is a list of tokens. Next, “in-
teresting” tokens are identified in the list of tokens. Since we
are primarily concerned with information about individuals,
all numbers, dates and proper names are considered “inter-
esting”. Whenever two interesting tokens appear within a
window of a certain width, the system generates a pattern
occurrence fact. More precisely, assume x and y are inter-
esting words and appear in document d, separated by the
sequence of tokens p. Then the following fact is produced:

patternOcc(p, x@d, y@d)[1]

Tokenizing Wikipedia. Wikipedia is a special type of
corpus, because it also provides structured information such
as infoboxes, lists, etc. Infoboxes and categories are tok-
enized as follows. The article entity (given by the title of
the article) is inserted before each attribute name and be-
fore each category name. For example, the part “born in =

Ulm” in the infobox about Albert Einstein is tokenized as
“Albert Einstein born in = Ulm”. By this minimal modification,
these structured parts become largely accessible to SOFIE.

Disambiguation. Our system produces pattern occur-
rences with wics. Each wic can have several meanings. The
system looks up the potential meanings in the ontology and
produces a disambiguation prior for each of them. For ex-
ample, suppose word w occurs in document d and w refers
to the entities e1, . . . , en in the ontology. Then, the system
produces a fact of the following form for each ei:

disambPrior(w@d, ei, l(d, w, ei))[1]

Here, l(d, w, ei) is a real value that expresses the likelihood
that w means ei in document d. There are numerous ap-
proaches for estimating this value [3]. We use a simple but
effective estimation, known as the bag of words approach:
Consider the set of words in d, and for each ei, consider
the set of entities connected to ei in the ontology. We com-
pute the intersection of these two sets and set l(d, w, ei) to
the size of the intersection. This value increases with the
amount of evidence that is present in d for the meaning ei.
We normalize all l(d, w, ei), i = 1 . . . n to a sum of 1.

6The preprocessing tools are available at http://mpii.de/
~suchanek/downloads/javatools.



We observe that this full disambiguation procedure is not
always necessary. First, all literals in the document (such
as dates) are already normalized. Hence, they are always
unambiguous. Second, some words have only one meaning.
For these tokens, our system produces no disambiguation
prior. Instead, it produces pattern occurrences that contain
the respective entity directly instead of the wic.

4.2 Weighted MAX-SAT Algorithm
Prior Assignments. In our weighted MAX-SAT prob-

lem, we have variables that correspond to hypotheses (such
as developed(Microsoft, JavaProgrammingLanguage)) and
variables that correspond to facts (namely ontological facts
and textual facts). A solution to the weighted MAX-SAT
problem should assign the truth value 1 to all previously ex-
isting facts. Therefore, we assign the value 1 to all textual
facts and all ontological facts a priori. This assumes that the
ontology is consistent with the rules. In the case of YAGO,
used in all our experiments, this holds by the construction
methods [38]. Furthermore, we assume that the ontology is
complete on the type and means facts. For YAGO, this as-
sumption is acceptable, because all entities in YAGO have
type and means relations. If type and means are fixed,
this allows certain simplifications, most importantly, pre-
computing the disambiguation prior (as explained in the pre-
vious subsection). This gives us a partial assignment, which
already assigns truth values to a large number of statements.

Approximation Algorithms. The weighted MAX-SAT
problem is NP-hard [20]7. This means that it is impractical
to find an optimal solution for large instances of the prob-
lem. Some special cases of the weighted MAX-SAT problem
can be solved in polynomial time [21, 29]. However, none
of them applies in our setting. Hence, we resort to using an
approximation algorithm. An approximation algorithm for
the weighted MAX-SAT problem produces an assignment for
the variables that is not necessarily an optimal solution. The
quality of that assignment is assessed by the approximation
ratio, i.e., the weight of all clauses satisfied by the assign-
ment divided by the weight of all clauses satisfied in the
optimal assignment. An algorithm for the weighted MAX-
SAT problem is said to have an approximation guarantee of
r ∈ [0, 1], if its output has an approximation ratio greater
than or equal to r for all weighted MAX-SAT problems.
Many algorithms have only weak approximation guarantees,
but perform much better in practice. Among the numerous
approximation algorithms that appear in the literature (see
[7]), we focus here on greedy algorithms for efficiency. Their
run-time is linear or quadratic in the total size of the clauses.

Johnson’s Algorithm. One of the most prominent
greedy algorithms is Johnson’s Algorithm [22]. It is particu-
larly simple and has been shown to have an approximation
guarantee of 2/3 [11]. However, the algorithm cannot pro-
duce assignments with an approximation ratio greater than
2/3 if the problem has the following shape [45]: For some
integer k, the set of variables is X = {x1, . . . , x3k} and the
set of clauses is

x3i+1 ∨ x3i+2

x3i+1 ∨ x3i+3

¬x3i+1 for i = 0, . . . , k − 1

7The SAT problem is not NP-hard if there are at most two
literals per clause. The weighted and unweighted MAX-SAT
problems, however, are NP-hard even when each clause has
no more than two literals.

Unfortunately, this is exactly the shape of clauses induced
by the rule for functional relations in the SOFIE setting
(in negated form, see Section 3.2). The relation disam-
biguatedAs already falls into this category, making John-
son’s Algorithm perform poorly for the very instances that
are common in our case of interest. Therefore, we con-
sider different greedy techniques that overcome this prob-
lem, and develop an algorithm that is particularly geared
for the structure of clauses that typically occur in SOFIE.

FMS Algorithm. We introduce the Functional Max Sat
Algorithm here, which is tailored for clauses of the above
shape. The algorithm relies on unit clauses:

Definition 4: [Unit Clauses]
Given a set of variables X , a partial assignment v on X
and a set of clauses C on X , a unit clause is a clause
c ∈ C that is not satisfied in v and that contains exactly
one unassigned literal.

Intuitively speaking, unit clauses are the clauses whose sat-
isfaction in the current partial assignment depends only on
a single variable. Our algorithm uses them as follows:

Algorithm 1: Functional Max Sat (FMS)
Input: Set of variables X

Set of weighted clauses C
Output:Assignment v for X
1 v := the empty assignment
2 WHILE there exist unassigned variables
3 FOR EACH unassigned x ∈ X
4 m0(x) :=

∑
{ w(c) | c ∈ C unit clause, x ∈ c0}

5 m1(x) :=
∑

{ w(c) | c ∈ C unit clause, x ∈ c1}
6 x∗ := arg max(|m1(x)−m0(x)|)

breaking ties arbitrarily
7 v(x∗) = m1(x∗) > m0(x∗) ? 1 : 0

Note that if there are no unit clauses, the algorithm will set
an arbitrary unassigned variable to 0. If m0(x) and m1(x)
are only recomputed for variables affected by the previous
assignment, the FMS Algorithm can be implemented [35]
to run in time O(n · m · k · log(n)), where n is the total
number of variables in the clauses, k is the maximum number
of variables per clause and m is the maximum number of
appearances of a variable.

DUC Propagation. Once the algorithm has assigned
a truth value to a single variable, the truth value of other
variables may be implied by necessity. These variables are
called safe:

Definition 5: [Safe Variable]
Given a set of variables X , a partial assignment v on
X and a weighted set of clauses C on X , an unassigned
variable x ∈ X is called safe, if∑

c unit clause
x ∈ cp

w(c) ≥
∑

c unsatisfied clause
x ∈ c¬p

w(c)

for some p ∈ {0, 1}. p is called the safe truth value of x.

It can be shown [35, 25, 44] that safe variables can be as-
signed their safe truth value without changing the weight
of the best solution that can still be obtained. Iterating
this procedure for all safe variables is called Dominating



Unit Clause Propagation (DUC Propagation). DUC Prop-
agation subsumes the techniques of unit propagation and
pure literal elimination employed by the DavisŰ-Putnam-
ŰLogemannŰ-Loveland (DPLL) algorithm [12] for the SAT
problem.

We enhance the FMS Algorithm by invoking DUC propa-
gation in each iteration of the outer loop (i.e., before assign-
ing truth values to previously unassigned variables). The
resulting algorithm is coined FMS∗. We prove [35]

Theorem 1: [Approximation Guarantee of FMS∗]
The FMS∗ Algorithm has approximation guarantee 1/2.

Lazy Generation of Clauses. Our algorithm works on
a database representation of the ontology. The hypotheses
and the textual facts are stored in the database as well. Since
our weighted MAX-SAT problem may be huge, we refrain
from generating all clauses explicitly. Rather, we use a lazy
technique that, given a statement s, generates all clauses in
which s appears on the fly [35]. The algorithm returns only
those clauses that are not yet satisfied. It uses an ordering
strategy, computing ground instances of the most constrain-
ing literals first.

4.3 Putting Everything Together
SOFIE Algorithm. SOFIE operates on a given set of

ontological facts (the ontology) and a given set of docu-
ments (the corpus). We run SOFIE in large batches, because
hypothesis testing is more effective when SOFIE considers
many patterns and hypotheses together.

SOFIE first parses the corpus, producing textual facts.
These are mapped into clause form, together with the result-
ing hypotheses. Then, the FMS∗ Algroithm is run, assigning
truth values to hypotheses. Afterwards, the true hypotheses
can be accepted as new facts of the ontology. This applies
primarily to new ontological facts (i.e., facts with relations
such as bornOnDate). Going beyond the ontological facts,
it is also possible to include the new expresses facts in the
ontology. Thus, the ontology would store which pattern ex-
presses which relation.

Now suppose that, later, SOFIE is run on a different cor-
pus. Since the SOFIE algorithm assigns the truth value 1
to all facts from the ontology, the later run of SOFIE would
adopt the expresses facts from the previous run. This way,
SOFIE can already build on the known patterns when it
analyzes a new corpus.

5. EXPERIMENTS
To study the accuracy and scalability of SOFIE under

realistic conditions, we carried out experiments with differ-
ent corpora, using YAGO [37] as the pre-existing ontology.
YAGO contains about 2 million entities and 20 million facts
for 100 different relations. Our experiments here demon-
strate that SOFIE is able to enhance YAGO by adding pre-
viously unharvested facts and completely new facts without
degrading YAGO’s high accuracy.

We experimented with both semi-structured sources from
Wikipedia and with unstructured free-text sources from the
Web. In each of these two cases, we first perform controlled
experiments with a small corpus for which we could man-
ually establish the ground truth of all correct and poten-
tially extractable facts. We report both precision and re-
call for these controlled experiments. Then, for each of the
semi-structured and unstructured cases, we show results for

large-scale variants, with evaluation of output precision and
run-time. Recall is not the primary focus of SOFIE, espe-
cially since we may hope for redundancy in large corpora.
All experiments were performed with the rules from Section
3.2, unless otherwise noted. In all cases, we used the de-
fault weights W = 100 for the inviolable rules, w = 1 for
the violable rules and ε = 0.1 for Ockham’s Razor. The
experiments were run on a standard desktop machine with
a 3 GHz CPU and 3.5 GB RAM, using the PostgreSQL
database system.

5.1 Semi-Structured Sources
5.1.1 Controlled Experiment

To study the performance of SOFIE on semi-structured
text under controlled conditions, we created a corpus of 100
random Wikipedia articles about newspapers. We decided
for 3 relations that were not present in YAGO, and added
10 instances for each of them as seed pairs to YAGO. SOFIE
took 3 min to parse the corpus, and 5 min to compute the
truth values for the hypotheses. We evaluated SOFIE’s pre-
cision and recall manually, as shown in Table 1.

Table 1: Results on the Newspaper Corpus (1)
Relation Ground Output Correct Precision Recall

truth pairs pairs

foundedOnDate 89 87 87 100% 97.75%
hasLanguage 45 29 28 96.55% 62.22%
ownedBy 57 49 49 100% 85.96%

Thanks to its powerful tokenizer, SOFIE immediately finds
the infobox attributes for the relations (such as owner for the
owner of a newspaper). In addition, SOFIE finds some facts
from the article text, but not all (e.g., for hasLanguage).
As our results show, SOFIE can achieve a precision that
is similar to the precision of tailored and specifically tuned
infobox harvesting methods as employed in [37, 38, 4, 42].
To test the performance of SOFIE without infoboxes, we
removed the infoboxes from half of the documents, the goal
being to extract the now missing attributes from other parts
of the articles. We chose our seed pairs from the portion of
articles that did have infoboxes. Table 2 shows the results.

Table 2: Results on the Newspaper Corpus (2)
Relation Ground Output Correct Precision Recall

truth pairs pairs

foundedOnDate 89 78 77 98.71% 86.51%
hasLanguage 45 18 18 100% 40.00%
ownedBy 57 26 26 100% 45.76%

Recall is much lower if the infoboxes are not present. Still,
SOFIE manages to find information also in the articles with-
out infoboxes. This is because SOFIE finds the category
“Newspapers established in...”. This category indicates the
year in which the newspaper was founded. Interestingly,
this category did not occur in our seed pairs for founde-
dOnDate. Thus, SOFIE had no clue about the quality of
this pattern. By help of the infoboxes, however, SOFIE
could establish a large number of instances of foundedOn-
Date. Since many of these had the category “Newspapers
established in...”, SOFIE accepted also the category pattern
“Newspapers established in X” as a good pattern for the
relation foundedOnDate. In other words, newly found in-
stances of the target relation induced the acceptance of new
patterns, which in turn produced new instances. This prin-
ciple is very close to what has been proposed for DIPRE [10]



and Snowball [2]. However, in contrast to such prior work,
SOFIE achieves this effect without any special consideration,
simply by its principle of including patterns and hypotheses
in its reasoning model. In the ideal case, SOFIE could ex-
tract the information solely from the article text, thus aban-
doning the dependence on infoboxes. Then, SOFIE would
perform a task similar to KYLIN [42]. Up to now, however,
the performance of SOFIE on this task trails behind KYLIN,
which has a recall of over 90%. This is because KYLIN is
highly tuned and specifically tailored to Wikipedia, whereas
SOFIE is a general-purpose information extractor.

5.1.2 Large-Scale Experiment
We created a corpus of 2000 randomly selected Wikipedia

articles. We chose 13 relations that are frequent in YAGO.
We added a rule saying that the birth date and the death
date of a person shall not have a difference of more than 100
years. For simplification, we also added a rule saying that a
person cannot be both an actor and a director of a movie.
This setting poses a stress test to SOFIE because of the high
thematic diversity: Articles could be “out of scope” (relative
to the 13 target relations) and even an individual article
could cover very heterogeneous topics; these difficulties can
mislead any IE method. SOFIE took 1:27 hours to parse the
corpus. It took 12 hours to create all hypotheses, and the
actual FMS* Algorithm ran for 1 hour and 17 min. Table 3
shows the results of our manual evaluation (where we always
disregard facts that were already known to YAGO).

Table 3: Results on the Wikipedia Corpus
Relation Output Correct Prec.

pairs pairs
actedIn 8 8 100%
bornIn 122 116 95.08%
bornOnDate 119 115 96.63%
diedOnDate 20 19 95.00%
directed 8 10 80.00%
establishedOnDate 50 44 88.00%
hasArea 1 1 100%
hasDuration 1 1 100%
hasPopulation 20 18 90.00%
hasProductionLanguage 4 4 100%
hasWonPrize 35 34 97.14%
locatedIn 109 100 91.74%
writtenInYear 8 8 100%
Total 505 478 94.65%

The evaluation shows good results. However, the precision
values are slightly worse than in the small-scale experiment.
This is due to the thematic diversity in our corpus. The
documents comprised articles about people, cities, movies,
books and programming languages. Our relations, in con-
trast, mostly apply only to a single type each. For exam-
ple, bornOnDate applies exclusively to people. Thus, the
chances for examples and counterexamples for each single
relation are lowered. Still, the precision values are very
good. For the bornIn relation, SOFIE found the category
pattern “People from X”. In most cases, this category indeed
identifies the birth place of people. In some cases, however,
the category tells where people spent their childhood. This
misleads SOFIE. Overall, the patterns stemmed from the
article texts, the categories, and the infoboxes. So SOFIE
harvested both the semi-structured and the unstructured
part of Wikipedia in a unified manner. Given this general-
purpose nature of SOFIE, the results are remarkably good.

5.2 Unstructured Web Sources
5.2.1 Controlled Experiment

To study the performance of SOFIE on unstructured text
under controlled conditions, we used a corpus of newspa-
per articles that has been used for a prototypical IE system,
Snowball [2]. Snowball was run on a collection of some thou-
sand documents. For a small portion of that corpus, the
authors established the ground truth manually. For copy-
right reasons, we only had access to this small portion. It
comprises 150 newspaper articles. The author kindly pro-
vided us with the output of Snowball on this corpus. The
corpus targets the headquarters relation, which is of partic-
ular finesse, as city names are usually highly ambiguous. To
exclude the effect of the ontology in SOFIE, we manually
added all organizations and cities mentioned in the articles
to YAGO. This gives us a clean starting condition for our ex-
periment, in which all failures are attributed solely to SOFIE
and not to the ontology. As the headquarters relation is not
known to YAGO, we added 5 pairs of an organization and a
city as seed pairs to the ontology. Unlike Snowball, SOFIE
extracts disambiguated entities. Hence, we disambiguated
each name in the ground truth manually. We expect SOFIE
to disambiguate its output correctly, whereas we will count
any surface representation of the ground truth entity as cor-
rect for Snowball.

To run SOFIE with minimal background knowledge, we
first ran it only with the isHeadquartersOf relation. This re-
lation is not a function, so that SOFIE has no counterexam-
ples. SOFIE took 2 minutes to parse the corpus, 22 minutes
to create the hypotheses and 20 sec for the FMS∗ algorithm.
We evaluated by the ideal metrics [2], which only takes into
account “relevant pairs”, i.e., pairs that have as a first com-
ponent a company that appears in the ground truth. Table
4 shows results for Snowball and SOFIE (as SOFIE 1).

Table 4: Results on the Snowball Corpus
Ground Output Relev Correct Precision Recall

truth pairs pairs pairs (ideal)

Snowball 120 429 65 37 56.69% 30.89%
SOFIE 1 120 35 35 32 91.43% 24.32%
SOFIE 2 120 46 46 42 91.30% 31.08%

SOFIE achieves a much higher precision than Snowball –
even though SOFIE faced the additional task of disambigua-
tion. In fact, the 3 cases where SOFIE fails are difficult
cases of disambiguation, where “Dublin” does not refer to
the Irish capital, but to a city in Ohio. To see how semantic
information influences SOFIE, we added the original head-
quarteredIn relation, which is the inverse relation of isHead-
quartersOf. We added a rule stating that whenever X is the
headquarters of Y , Y is headquartered in X. Furthermore,
we made headquarteredIn a functional relation, so that one
organization is only headquartered in one location. The re-
sults are shown as SOFIE 2 in Table 4. The inverse relation
has allowed SOFIE to find patterns, in which the organi-
zation precedes the headquarter (“Microsoft, a Redmond-based

company”). This has increased SOFIE’s recall to the level
of Snowball’s recall. At the same time, the functional con-
straint has kept SOFIE’s precision at a very high level.

5.2.2 Large Scale Experiment
To evaluate SOFIE’s performance on a large, unstructured

corpus, we downloaded 10 biographies for each of 400 US
senators, as returned by a Google search (less, if the pages



could not be accessed or were not in HTML). We excluded
pages from Wikipedia. This resulted in 3440 HTML files.
Extracting information from these files is a particulary chal-
lenging endeavor, because the documents are arbitrary, un-
structured documents from the Web, containing, for exam-
ple, tables, lists, advertisements, and occasionally also error
messages. The disambiguation is particularly difficult. For
example, there was one senator called James Watson, but
YAGO knows 13 people with this name.

We added a rule saying that the birth date and the death
date of a person shall not have a difference of more than
100 years. As explained in Section 4.3, we ran SOFIE in 5
batches of 20,000 pattern occurrences, keeping the true hy-
potheses and the patterns from the previous iteration for the
next one. Overall, SOFIE took 7 hours to parse the corpus
and 9 hours to compute the true hypotheses. We evaluated
the results manually by checking each fact on Wikipedia,
thereby also checking whether the entities have been disam-
biguated correctly. Table 5 shows our results.

Table 5: Results on the Biography Corpus
Relation # Output # Correct Precision

pairs pairs
politicianOf 339 ≈ 322 94.99%
bornOnDate 191 168 87.96%
bornIn 119 104 87.40%
diedOnDate 66 65 98.48%
diedIn 29 4 13.79%
Total 744 673 90.45%

For politicianOf, we evaluated only 200 facts, extrapolating
the number of correct pairs and the precision accordingly.
Our evaluation shows very good results. SOFIE did not only
extract birth dates, but also birth places, death dates, and
the states in which the people worked as politicians. Each of
these facts comes with its particular disambiguation prob-
lems. The place of birth, for example, is often ambiguous, as
many cities in the United States bear the same name. Even
the birth date may come with its particular difficulties if the
name of the person refers to multiple people. Thus, we can
be extremely satisfied with our precision values.

SOFIE could not establish the diedIn facts correctly,
though. This is due to some misleading patterns that got
established in the first batch. Counterexamples were only
found in a later batch, when the patterns were already ac-
cepted. However, the general accuracy of SOFIE is still
remarkable, given that the system extracted disambiguated,
clean canonicalized facts from Web documents.

5.3 Comparison of MAX-SAT Algorithms
To see how the FMS∗ Algorithm performs in our SOFIE

setting, we ran the algorithm on a small corpus of 250 biog-
raphy files. We compared the FMS∗ Algorithm to Johnson’s
Algorithm [22] and to a simple greedy algorithm that sets
a variable to 1 if the weight of unsatisfied clauses in which
the variable occurs positive is larger than the weight of un-
satisfied clauses where it appears negative. Table 6 shows
the results. The number of unsatisfied inviolable clauses
was 0 in all cases. In general, all algorithms perform very
well. However, the FMS∗ Algorithm manages to satisfy the
largest number of rules. It violates only one tenth of the
rules that the other algorithms violate.

Table 6: MAX SAT Algorithms (SOFIE Setting)
Algorithm Time Unsatisfied Weight of

violable unsatisfied
clauses clauses

(of 172,165) (% of total)
FMS∗ 15 min 241 0.0013
Johnson 7 min 2,357 0,0301
Simple 7 min 2,583 0.0365

To study the performance of the FMS∗ Algorithm on general
MAX-SAT problems, we used the benchmarks provided by
the International Conference on Theory and Applications of
Satisfiability Testing8. We took all benchmark suites where
the optimal solution was available: (1) randomly generated
weighted MAX-SAT problems with 2 variables per clause
(90 problems), (2) randomly generated weighted MAX-SAT
problems with 3 variables per clause (80 problems) and (3)
designed weighted MAX-SAT problems (geared for “diffi-
cult” optimum solutions) with 3 variables per clause (15
problems). Each problem has around 100 variables and
around 600 clauses. Table 7 shows the results.

Table 7: MAX SAT Algorithms (Benchmarks)
Algorithm Averaged approximation ratios, %

Suite 1 Suite 2 Suite 3
Johnson 86.6837 91.5369 99.9682
Simple 86.6919 91.4946 99.9682
FMS∗ 87.3069 92.2848 99.9702

All algorithms find good approximate solutions, with ap-
proximation ratios on average greater than 85%. The set-
ting of benchmarks is somewhat artificial and not designed
for approximate algorithms. However, the experiments give
us confidence that the FMS∗ Algorithm has at least compa-
rable performance to Johnson’s Algorithm. Our main goal,
however, was to devise an algorithm that performs well in
the SOFIE setting. The approximation guarantee of 1/2
gives a lower bound on the performance in the general case.

6. CONCLUSION
The central thesis of this paper is that the knowledge of

an existing ontology can be harnessed for gathering and rea-
soning about new fact hypotheses, thus enabling the on-
tology’s own growth. To prove this point, we have pre-
sented the SOFIE system that reconciles pattern-based in-
formation extraction, entity disambiguation, and ontological
consistency constraints into a unified framework. Our ex-
periments with both Wikipedia and natural-language Web
sources have demonstrated that SOFIE can achieve its goals
of harvesting ontological facts with very high precision.

For our experiments, we have used the YAGO ontol-
ogy. However, we are confident that SOFIE could work
with any other ontology that can be expressed in first or-
der logic. SOFIE’s main algorithm is completely source-
independent. There is no feature engineering, no learning
with cross validation, no parameter estimation, and no tun-
ing of algorithms. Notwithstanding this self-organizing na-
ture, SOFIE’s performance could be further boosted by cus-
tomizing its rules to specific types of input corpora. With
appropriate rules, SOFIE could potentially even accommo-
date other IE paradigms within its unified framework, such
as co-occurrence analysis [13] or infobox completion [42].

8http://www.maxsat07.udl.es/
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