YAGO2: A Spatially and Temporally Enhanced
Knowledge Base from Wikipedia

Johannes Hoffart®, Fabian M. Suchanek®, Klaus Berberich?®, Gerhard Weikum?®

%Maz Planck Institute for Informatics, Germany
bINRIA Saclay, France

Abstract

We present YAGO2, an extension of the YAGO knowledge base, in which en-
tities, facts, and events are anchored in both time and space. YAGO?2 is built
automatically from Wikipedia, GeoNames, and WordNet. It contains 447 mil-
lion facts about 9.8 million entities. Human evaluation confirmed an accuracy
of 95% of the facts in YAGO2. In this paper, we present the extraction method-
ology, the integration of the spatio-temporal dimension, and our knowledge
representation SPOTL, an extension of the original SPO-triple model to time
and space.

Keywords: ontologies, knowledge bases, spatio-temporal facts, information
extraction

1. Introduction

1.1. Motivation

Comprehensive knowledge bases in machine-readable representations have
been an elusive goal of AI for decades. Seminal projects such as Cyc [1]
and WordNet [2] manually compiled common-sense and lexical (word-sense)
knowledge, yielding high-quality repositories on intensional knowledge: general
concepts, semantic classes, and relationships like hyponymy (subclass-of) and
meronymy (part-of). These early forms of knowledge bases contain logical state-
ments that songwriters are musicians, that musicians are humans and that they
cannot be any other species, or that Canada is part of North America and be-
longs to the British Commonwealth. However, they do not know that Bob Dylan
and Leonard Cohen are songwriters, that Cohen is born in Montreal, that Mon-
treal is a Canadian city, or that both Dylan and Cohen have won the Grammy
Award. Early resources like the original Cyc and WordNet lacked extensional
knowledge about individual entities of this world and their relationships (or had
only very sparse coverage of such facts).

Email address: jhoffart@mpi-inf.mpg.de (Johannes Hoffart)

Preprint submitted to Artificial Intelligence March 19, 2012

In the last few years, the great success of Wikipedia and algorithmic ad-
vances in information extraction have revived interest in large-scale knowledge
bases and enabled new approaches that could overcome the prior limitations.
Notable endeavors of this kind include DBpedia [3], KnowItAll [4, 5], Omega
[6], WikiTaxonomy [7, 8], and YAGO 9, 10], and meanwhile there are also com-
mercial services such as freebase.com, trueknowledge.com, or wolframalpha.com.
These contain many millions of individual entities, their mappings into seman-
tic classes, and relationships between entities. DBpedia has harvested facts
from Wikipedia infoboxes at large scale, and also interlinks its entities to other
sources in the Linked-Data cloud [11]. YAGO has paid attention to inferring
class memberships from Wikipedia category names, and has integrated this in-
formation with the taxonomic backbone of WordNet. Most of these knowledge
bases represent facts in the form of subject-property-object triples (SPO triples)
according to the RDF data model, and some provide convenient query interfaces
based on languages like SPARQL.

However, current state-of-the-art knowledge bases are mostly blind to the
temporal dimension. They may store birth dates and death dates of people, but
they are unaware of the fact that this creates a time span that demarcates the
person’s existence and her achievements in life. They are also largely unaware
of the temporal properties of events. For example, they may store that a certain
person is the president of a certain country, but presidents of countries or CEOs
of companies change. Even capitals of countries or spouses are not necessarily
forever. Therefore, it is crucial to capture the time periods during which facts
of this kind actually happened. However, this kind of temporal knowledge has
not yet been treated systematically in state-of-the-art work. A similar problem
of insufficient scope can be observed for the spatial dimension. Purely entity-
centric representations know locations and their located-in relations, but they
do not consistently attach a geographical location to events and entities. The
geographical location is a crucial property not just of physical entities such as
countries, mountains, or rivers, but also of organization headquarters, or events
such as battles, fairs, or people’s births. All of these entities have a spatial
dimension.

If it were possible to consistently integrate the spatial and the temporal
dimension into today’s knowledge bases, this would catapult the knowledge
bases to a new level of usefulness. The knowledge base would be fully time and
space aware, knowing not only that a fact is true, but also when and where it was
true. The most obvious application is that it would become possible to ask for
distances between places, such as organization headquarters and cities (already
possible today), or even between places of events (mostly not supported today).
The time-awareness would allow asking temporal queries, such as “Give me all
songs that Leonard Cohen wrote after Suzanne”. Another, perhaps less obvious
application is the ability to spatially and temporally locate practically any entity
that occurs in a natural language discourse. Simple examples are sentences such
as “I am going to Berlin”, which could be automatically annotated with the
coordinates of Berlin. We may even want to refer to locations by informal and
vague phrases such as “the midwest” or “the corn belt”. Likewise, the new

knowledge base would be able to assign a time dimension to a sentence such
as “During the era of Elizabeth I, the English waged war against the Spanish”,
so that this event could be temporally anchored. More subtle examples are
expressions that have both a temporal and a spatial dimension. Take “Summer
of Love” as example. This term conveys more than just a time (1967). It
also conveys a place (San Francisco) and a duration (a few months) [12]. A
time and space aware knowledge base could correctly locate this event on both
dimensions. We could for example ask for “all musicians born in the vicinity of
the Summer of Love”.

1.2. Contribution

What we need is a comprehensive anchoring of current ontologies along both
the spatial and the temporal dimension. This paper presents such an endeavor:
YAGO2. As the name suggests, this is a new edition of the YAGO knowledge
base. However, in contrast to the original YAGO, the methodology for building
YAGO2 (and also maintaining it) is systematically designed top-down with the
goal of integrating entity-relationship-oriented facts with the spatial and tempo-
ral dimensions. To this end, we have developed an extensible approach to fact
extraction from Wikipedia and other sources, and we have tapped on specific
inputs that contribute to the goal of enhancing facts with spatio-temporal scope.
Moreover, we have developed a new representation model, coined SPOTL tuples
(SPO + Time + Location), which can co-exist with SPO triples, but provide
a much more convenient way of browsing and querying the YAGO2 knowl-
edge base. In addition, YAGO2 incorporates carefully selected keywords and
keyphrases that characterize entities; these are automatically gathered from the
contexts where facts are extracted from. As no knowledge base can ever be com-
plete, the conteXtual annotations further enhance the capabilities for querying
and interactive exploration. The full YAGO2 interface provides SPOTLX tuples
to this end.

Along these lines, the paper makes the following novel contributions:

e an extensible framework for fact extraction that can tap on infoboxes, lists,
tables, categories, and regular patterns in free text, and allows fast and
easy specification of new extraction rules;

e an extension of the knowledge representation model tailored to capture
time and space, as well as rules for propagating time and location informa-
tion to all relevant facts;

e methods for gathering temporal facts from Wikipedia and for seamlessly
integrating spatial types and facts from GeoNames (http://geonames.
org), in an ontologically clean manner with high accuracys;

e anew SPOTL(X) representation of spatio-temporally enhanced facts, with
expressive and easy-to-use querying;

e exemplary demonstrations of the added value obtained by the spatio-
temporal knowledge in YAGO2, by showing how this aids in extrinsic
tasks like question answering and named entity disambiguation.

The result is YAGO2, available at http://www.yago-knowledge.org. It con-
tains more than 447 million facts for 9.8 million entities (if GeoNames entities
are included). Without GeoNames entities, it still contains 124 million facts for
2.6 million entities, extracted from Wikipedia and WordNet. Both facts and
entities are properly placed on their temporal and geographical dimension, thus
making YAGO2 a truly time and space aware ontology. More than 30 million
facts are associated with their occurrence time, and more than 17 million with
the location of their occurrence. The time of existence is known for 47% of
all entities, the location for 30%. Sampling-based manual assessment shows
that YAGO2 has a precision (i.e., absence of false positives) of 95 percent (with
statistical significance tests).

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the original YAGO knowledge base. Section 3 presents our extraction archi-
tecture. Section 4 introduces the temporal dimension in YAGO2. Section 5
introduces the spatial dimension. Section 6 explains additional context data in
YAGO2. Section 7 describes our SPOTL(X) model and querying. Section 8
presents the evaluation of YAGO2. Section 9 presents the exemplary extrinsic
tasks that we carried out to demonstrate the added value of YAGO2. Section
10 reviews related work, before Section 11 concludes.

2. The YAGO Knowledge Base

YAGO was originally introduced in [9]. The YAGO knowledge base is au-
tomatically constructed from Wikipedia. Each article in Wikipedia becomes
an entity in the knowledge base (e.g., since Leonard Cohen has an article in
Wikipedia, LeonardCohen becomes an entity in YAGO). Certain categories in
Wikipedia can be exploited to deliver type information (e.g., the article about
Leonard Cohen is in the category Canadian poets, so he becomes a canadian
poet). YAGO links this type information to the taxonomy of WordNet [2] (e.g.,
canadian poet becomes a subclass of the WordNet synset poet). This linkage
allowed YAGO to create a strong taxonomy, which is key not only to the appli-
cations of the knowledge base, but also to the consistency checks that YAGO
can perform on its data.

The linkage algorithm (which we still use in YAGO2) proceeds as follows:
For each category of a page, it determines the head word of the category name
through shallow noun phrase parsing. In the example of Canadian poets, the
head word is poets. It checks whether the head word is in plural. If so, it pro-
poses the category as a class and the article entity as an instance. This process
effectively distinguishes thematic categories (such as Canadian poetry) from
conceptual ones, by the simple observation that only countable nouns can ap-
pear in plural form and only countable nouns can be ontological classes. The
class is linked to the WordNet taxonomy by choosing the most frequent sense

of the head word in WordNet. This simple disambiguation strategy proved sur-
prisingly accurate. In addition, YAGO contains a list of a handful of manually
compiled exceptions. These are head words that are not conceptual even though
they appear in plural (such as stubs in Canadian poetry stubs). A second
list of exceptions contains words that do not map to their most frequent sense,
but to a different sense. The word capital, e.g., refers to the main city of a
country in the majority of cases and not to the financial amount, which is the
most frequent sense in WordNet. We have slightly extended these lists over time
and provide a new evaluation of the results in this paper.

YAGO has about 100 manually defined relations, such as wasBornOnDate,
locatedIn and hasPopulation. Categories and infoboxes can be exploited to
deliver instances of these relations. These instances are called facts: triples of
an entity, a relation, and another entity. For this purpose, YAGO has manually
defined patterns that map categories and infobox attributes to fact templates
(e.g., Leonard Cohen has the infobox attribute born=Montreal, which gives
us the fact wasBornIn(LeonardCohen, Montreal)). This resulted in 2 million
extracted entities and 20 million facts. On top of these extractions, the YAGO
algorithms performed extensive consistency checks, eliminating facts that do not
conform to type or functionality constraints. A manual evaluation confirmed
an overall precision of YAGO of 95%. The key to such a high precision on such
a large set of facts were the manually defined relations, which gave the facts a
well-defined semantics and thus enabled YAGO to self-check its consistency.

YAGO represents facts as triples of subject (S), predicate (P), and object
(0), in compatibility with the RDF data model. YAGO makes extensive use
of reification: every fact (SPO triple) is given an identifier, and this identifier
can become the subject or the object of other facts. For example, to say that
a fact with id #42 was extracted from Wikipedia, YAGO can contain the fact
wasFoundIn(#42, Wikipedia). This fact has itself an id. Unlike RDF, YAGO
can only reify facts that are already part of the knowledge base. Thereby, YAGO
avoids problems of undecidability. The consistency of a YAGO knowledge base
can still be decided in polynomial time [9].

During its young life, YAGO has found many applications and is part of
or contributes to numerous other knowledge base endeavors (such as DBpedia
or SUMO). The present paper embarks to take YAGO to the next level of a
temporally and spatially enhanced ontology.

3. Extensible Extraction Architecture

In the first version of YAGO, much of the extraction was done by hard-
wired rules in the source code. As this design does not allow easy extension, we
have completely re-engineered the code. The new YAGO2 architecture is based
on declarative rules that are stored in text files. This reduces the hard-wired
extraction code to a method that interprets the rules. The rules take the form
of subject-predicate-object-triples, so that they are basically additional YAGO2
facts. Indeed, the rules themselves are a part of the YAGO2 knowledge base.
There are different types of rules.

Factual rules are simply additional facts for the YAGO2 knowledge base.
They are declarative translations of all the manually defined exceptions and
facts that the previous YAGO code contained. These include the definitions of
all relations, their domains and ranges, and the definition of the classes that
make up the YAGO2 hierarchy of literal types (yagoInteger etc.). Each literal
type comes with a regular expression that can be used to check whether a string
is part of the lexical space of the type. The factual rules also add 3 new classes
to the taxonomy: yagoLegalActor (which combines legal actors such as orga-
nizations and people), yagoLegalActorGeo (the union of yagoLegalActor and
geopolitical entities) and yagoGeoEntity (which groups geographical locations
such as mountains and cities). The factual rules extend the list of exceptions for
linking the Wikipedia categories to the WordNet synsets (explained in Section
2). The list of category head words that should not be mapped to their primary
sense in WordNet grew to 60. For example, the word “capital” has as primary
meaning in WordNet the financial amount, whereas the categories use the word
in the sense of a city. Such a factual rule is represented as a simple YAGO fact:

"capital" hasPreferredMeaning wordnet_capital_108518505

Implication rules say that if certain facts appear in the knowledge base,
then another fact shall be added. Thus, implication rules serve to deduce new
knowledge from the existing knowledge. An implication rule is also expressed as
a YAGO fact, i.e., as a triple. The subject of the fact states the premise of the
implication, and the object of the fact holds the conclusion. Both the subject
and the object are strings that contain fact templates. Whenever the YAGO2
extractor detects that it can match facts to the templates of the subject, it
generates the fact that corresponds to the object and adds it to the knowledge
base. Thus, implication rules have the expressive power of domain-restricted
Horn rules. For example, one of the implication rules states that if a relation
is a sub-property of another relation, then all instances of the first relation are
also instances of the second relation. Implication rules use the relation implies,
with strings as arguments:

"$1 $2 $3; $2 subpropertyOf $4;" implies "$1 $4 $3"

Replacement rules say that if a part of the source text matches a specified
regular expression, it should be replaced by a certain string. This takes care of
interpreting micro-formats, cleaning up HTML tags, and normalizing numbers.
It also takes care of eliminating administrative Wikipedia categories (such as
“Articles to be cleaned up”) and articles that we do not want to process (such
as articles entitled “Comparison of...”) — simply by replacing this material by
the empty string. Replacement rules use replace, with strings as arguments:

"\N{\{USA\F\}" replace "[[United States]]"

Extraction rules say that if a part of the source text matches a spec-
ified regular expression, a sequence of facts shall be generated. These rules
apply primarily to patterns found in the Wikipedia infoboxes, but also to Wi-
kipedia categories, article titles, and even other regular elements in the source

such as headings, links, or references. The regular expression (Syntax as in
java.util.regex) contains capturing groups that single out the parts that
contain the entities. The capturing groups are used in the templates that gen-
erate the facts. The templates also define the syntactic type of the entity, e.g.
“Wikipedia Link” or “Class” or one of the YAGO literal types. This allows the
extractor to seek and check the entities in the captured group, thus making sure
that no syntactically wrong information is extracted.

"\[\[Category: (.+) births\J\]" pattern "$0 wasBornOnDate Date($1)"

This architecture for extraction rules is highly versatile and easily extensible.
It allows accommodating new infoboxes, new exceptions, new fact types, and
new preprocessing by simply modifying the text files of rules.

In our current implementation, the extraction rules cover some 200 infobox
patterns, some 90 category patterns, and around a dozen patterns for dealing
with disambiguation pages. Our patterns map to around 100 relations. They
aim to cover the 200 most frequent infobox attributes in Wikipedia. They ex-
clude infobox attributes that are used inconsistently in Wikipedia. One example
is the attribute history, which contains sometimes date information and some-
times full text descriptions. They also exclude attributes that contain natural
language text, or that contain mostly entities that are not in Wikipedia, because
YAGO could not type check these facts.

4. Giving YAGO a Temporal Dimension

The meta-physical characteristics of time and existence have been the sub-
ject of intense philosophical debate ever since the inception of philosophy. For
YAGO2, we can choose a more pragmatic approach to time, because we can de-
rive the temporal properties of objects from the data we have in the knowledge
base.

YAGO?2 contains a data type yagoDate that denotes time points, typically
with a resolution of days but sometimes with cruder resolution like years. Dates
are denoted in the standard format YYYY-MM-DD (ISO 8601). If only the year
is known, we write dates in the form YYYY-##-## with # as a wildcard symbol.
In YAGO2, facts can only hold at time points; time spans are represented
by two relations that together form a time interval (e.g. wasBornOnDate and
diedOnDate). We consider temporal information for both entities and facts:

e Fntities are assigned a time span to denote their existence in time. For
example, Elvis Presley is associated with 1935-01-08 as his birthdate
and 1977-08-16 as his time of death. Bob Dylan (who is still alive), is
associated only with the time of birth, 1941-05-24. The relevant relations
are discussed below in Section 4.1.

e Fuacts are assigned a time point if they are instantaneous events, or a time
span if they have an extended duration with known begin and end. For
example, the fact BobDylan created BlondeOnBlonde is associated with

the time point 1966-05-16 (the release date of this album). The fact
BobDylan isMarriedTo Saralowndes is associated with the time span
from 1965-##-## to 1977-##-##. The time of facts is discussed in Section
4.2.

Thus, YAGO2 assigns begin and/or end of time spans to all entities, to all
facts, and to all events, if they have a known start point or a known end point.
If no such time points can be inferred from the knowledge base, it does not
attempt any assignment. Thereby, YAGO2 chooses a conservative approach,
leaving some time-dependent entities without a time scope, but never assigning
an ill-defined time.

4.1. Entities and Time

Many entities come into existence at a certain point of time and cease to exist
at another point of time. People, for example, are born and die. Countries are
created and dissolved. Buildings are built and possibly destroyed. We capture
this by the notion of an entity’s existence time, the span between the creation
and destruction of the entity.

Some entities come into existence, but never cease to exist. This applies to
abstract creations such as pieces of music, scientific theories, or literature works.
These entities have not existed prior to their inception, but they will never cease
to exist. Thus, they have an unbounded end point of their existence time. Other
entities have neither well-defined begin nor end, or we lack information about
these points in the knowledge base. Examples are numbers, mythological figures,
or virus strains (for which we do not have any information about their existence
— which is different from their discovery). In these cases, YAGO2 does not assign
any existence time.

Instead of manually considering each and every entity type as to whether
time spans make sense or not, we focused on the following four major entity

types:

People where the relations wasBornOnDate and diedOnDate demarcate their
existence times;

Groups such as music bands, football clubs, universities, or companies, where
the relations wasCreatedOnDate and wasDestroyedOnDate demarcate
their existence times;

Artifacts such as buildings, paintings, books, music songs or albums, where the
relations wasCreatedOnDate and wasDestroyedOnDate (e.g., for buildings
or sculptures) demarcate their existence times;

Events such as wars, sports competitions like Olympics or world championship
tournaments, or named epochs like the “German autumn”, where the rela-
tions startedOnDate and endedOnDate demarcate their existence times.
This includes events that last only one day (e.g., the fall of the Berlin
wall). Here, the start date and the end date of the event coincide. We use
the relation happenedOnDate for these cases.

We believe that these four types cover almost all of the cases where entities
have a meaningful existence time. Note that the entities are already captured
in richly populated types within YAGO2, covering two thirds of all entities (not
including the GeoNames locations).

Rather than dealing with each of the above four types in a separate
manner, we unify these cases by introducing two generic entity-time re-
lations: startsExistingOnDate and endsExistingOnDate. DBoth are an
instance of the general yagoRelation, and hold between an entity and
an instance of yagoDate. They define the temporal start point and
end point of an entity, respectively. We then specify that certain rela-
tions are sub-properties of the generic ones: wasBornOnDate subpropertyOf
startsExistingOnDate, diedOnDate subproperty0f endsExistingOnDate,
wasCreatedOnDate subproperty0Of startsExistingOnDate, and so on. For
events that last only day, we specify that happenedOnDate is a sub-property
of both startsExistingOnDate and endsExistingOnDate. Declaring relations
subproperty0f other relations serves on the one hand as grouping, on the
other hand we use the YAGO?2 implication rule infrastructure to automati-
cally deduce a second fact for the parent relation. For example, for the fact
BobDylan wasBornOnDate 1941-05-24, an implication rule creates the second
fact BobDylan startsExistingOnDate 1941-05-24.

The YAGO2 extractors can obtain a lot of temporal information about en-
tities from Wikipedia infoboxes. Our extractors also find temporal information
in the categories. For example, the article about the 82nd Academy Awards
Ceremony is in the category “2009 Film Awards”, which gives us the temporal
dimension for the award: the year 2009.

Our infrastructure generates existence times for all entities where YAGO can
deduce such information from its data.

4.2. Facts and Time
4.2.1. Facts with an Eztracted Time

Facts, too, can have a temporal dimension. For example, BobDylan
wasBornIn Duluth is an event that happened in 1941. The fact BarackObama
holdsPoliticalPosition PresidentOfTheUnitedStates denotes an epoch
from the time Obama was elected until either another president is elected or
Obama resigns. When we can extract time information for these kinds of facts
from Wikipedia, we associate it as occurrence time: the time span when the
fact occurred. To capture this knowledge, we introduce two new relations,
occursSince and occursUntil, each with a (reified) fact and an instance of
yagoDate as arguments. For example, if the above fact had the fact id #1, we
would indicate its time by #1 occursSince 2009-01-20.

For facts that last only one day (or one year if this is the relevant granularity,
e.g., for awards), we use a short-hand notation by the automatically deduced
relation occursOnDate. For example, for BarackObama wasInauguratedAs
PresidentOfTheUnitedStates with fact id #2, we write #2 occursOnDate
2009-01-20, as short-hand for two separate facts #2 occursSince 2009-01-20
and #2 occursUntil 2009-01-20.

If the same fact occurs more than once, then YAGO2 will contain it mul-
tiple times with different ids. For example, since Bob Dylan has won two
Grammy awards, we would have #1: BobDylan hasWonPrize GrammyAward with
#1 occursOnDate 1973, and a second #2: BobDylan hasWonPrize GrammyAward
(with a different id) and the associated fact #2 occursOnDate 1979.

The YAGO2 extractors can find occurrence times of facts from the Wiki-
pedia infoboxes. For example, awards are often mentioned with the year they
were awarded. Spouses are often mentioned with the date of marriage and di-
vorce. Our extractors can detect these annotations and attach the corresponding
occursSince and occursUntil facts directly to the target fact.

4.2.2. Facts with a Deduced Time

In some cases, the entities that appear in a fact may indicate the occur-
rence time of the fact. For example, for BobDylan wasBornIn Duluth, it seems
most natural to use Dylan’s birth date as the fact’s occurrence time. For
ElvisPresley diedIn Memphis we would want the death date of the subject as
the occurrence time, and for BobDylan created BlondeOnBlonde, it should be
the creation time of the object.

The principle for handling these situations is to use rules that propagate
the begin or end of an entity’s existence time to the occurrence time of a fact,
where the entity occurs as a subject or object. To avoid a large number of
rules for many specific situations, we categorize relations into several major
cases. Each of these has an ontological interpretation, and each can be handled
by a straightforward propagation rule. More precisely, we consider a fact of
the form $id: $s $p $o where $id, $s, $p, $o are placeholders for identifier,
subject, property, and object of the fact, respectively. We want to deduce
an ontologically meaningful occurrence time for this fact, i.e., facts with the
relations occursSince or occursUntil, based on the ontological nature of the
relation $p.

Permanent relations Existence times of entities are associated with rela-
tions that have an identifying character, e.g. hasISBN or isCalled, but
also with other relations that imply permanent association to an entity.
An example here is the type relation: although it might change over
time (BobDylan was not always a singer), they are mostly permanent
(BobDylan was, is, and always will be a person). We call all these rela-
tions permanent relations. The occurrence time of facts for such relations
coincides with the existence time of the subject entity. We group all these
relations into a new relation class permanentRelation, by stating that
hasISBN type permanentRelation, isCalled type permanentRelation,
and so on. permanentRelation is in turn a subclass of yagoRelation.
Note that here we use type as means of categorizing relations meaning-
fully, and not subproperty0f, which would automatically deduce new
facts. The propagation of the existence time of $s to the time of the en-
tire fact is specified as an implication rule (see Section 3), written here in

10

logical deduction notation, with the premises above the bar and conclusion
below:

$id: $s $p $o;
$p type permanentRelation;
$s startsExistingOnDate $b;
$s endsExistingOnDate $e

$id occursSince $b;
$id occursUntil $e

Creation relations Some facts indicate the creation of an entity. For example,
a wasBornIn fact indicates the birth of a person. A fact with such a rela-
tion has as its occurrence time the beginning of the existence time of the
created entity. For example, the fact ElvisPresley wasBornIn Tupelo
has as its occurrence time the birth date of Elvis Presley. Therefore, we
introduce a class subjectStartRelation, which groups all relations that
indicate the creation of a new entity in their subject position. Some re-
lations indicate the creation of an entity in their object position. For
example, the relation created indicates the creation of an artifact, which
appears in the object position of the relation. Consider, e.g., the fact
LeonardCohen created Suzanne(song), which indicates the creation of
the song Suzanne (song). We make these relations instances of the class
objectStartRelation.

Now, it suffices to transfer the starting point of the existence time of the
new entity to the occurrence time of the creation fact. This can be done
by an implication rule:

$id: $s $p $o;
$p type objectStartRelation;
$o startsExistingOn $b

$id occursSince $b;
$id occursUntil $b

Consider again the example fact #1: LeonardCohen created Suzanne (song).
Knowing that the song Suzanne came into existence in 1967, we would de-
duce two new facts: #1 occursSince 1967-##-## and #1 occursUntil
1967-##-##. An analogous rule transfers the start point of the ex-
istence of the subject to the fact, if the relation is an instance of
subjectStartRelation.

Destruction relations Other facts indicate the destruction of an entity.
These are, e.g., diedIn or destroyed. Analogously to the creation re-
lations, we define two new classes of relations, subjectEndRelation and
objectEndRelation. The first class contains all relations that indicate
that the subject of the fact ceases to exist (such as diedIn). The second
class contains all relations that indicate that the object of the fact ceases
to exist (such as destroyed in Taliban destroyed BuddhasOfBamyan).

11

The time point of the destruction coincides with the end of the existence
time of the destroyed entity.

This can be expressed by a simple implication rule:
$id: $s $p $o;

$p type subjectEndRelation;
$s endsExisting0On $e

$id occursSince $e;
$id occursUntil $e

An analogous rule transfers the end point of the existence of the object to
the fact, if the relation is an instance of objectEndRelation.

Unless a relation is explicitly of one of these types, we do not use any prop-
agation of this kind. For example, we do not attempt to propagate entity
existence times into fact occurrence times for relations such as subclassOf
or hasDomain. Even relations such as hasWonPrize or isCapitalOf will not
receive an occurrence time, unless it is explicitly specified in the Wikipedia in-
foboxes. This is a conservative approach, but avoids non-sensical deduction of
occurrence times.

4.3. Extraction Time of Facts

In addition to the occurrence times, each fact also has a time point of its
extraction and insertion into the knowledge base. For example, assume that
the fact LeonardCohen created Suzanne has identifier #42. This fact #42 was
found in Wikipedia and, therefore, we have a (meta-)fact #43: #42 wasFoundIn
Wikipedia. The fact #43 happened on October 15, 2010, when we ran the
extractor, and therefore, we have a fact #43 extractedOn 2011-06-15. Each
fact is adorned with this meta-information. This information is independent of
the semantic aspects of the fact, and rather captures provenance. Still, such
meta-facts are useful, as they allow reasoners to include or exclude facts from
certain sources or from certain points of time.

5. Giving YAGO a Spatial Dimension

All physical objects have a location in space. For YAGO2, we are concerned
with entities that have a permanent spatial extent on Earth — for example coun-
tries, cities, mountains, and rivers. In the original YAGO type hierarchy (and in
WordNet), such entities have no common super-class. Therefore, we introduce a
new class yagoGeoEntity, which groups together all geo-entities, i. e. all entities
with a permanent physical location on Earth. The subclasses of yagoGeoEntity
are (given by preferred name and WordNet 3.0 synset id): location (27167), body
of water (9225146), geological formation (9287968), real property (13246475),
facility (3315023), excavation (3302121), structure (4341686), track (4463983),
way (4564698), and land (both 9335240 and 9334396). The position of a geo-
entity can be described by geographical coordinates, consisting of latitude and

12

longitude. We introduce a special data type to store geographical coordinates,
yagoGeoCoordinates. An instance of yagoGeoCoordinates is a pair of a lat-
itude and a longitude value. Each instance of yagoGeoEntity is directly con-
nected to its geographical coordinates by the hasGeoCoordinates relation.

YAGO?2 only knows about coordinates, not polygons, so even locations that
have a physical extent are represented by a single geo-coordinate pair. As we
extract these coordinates from Wikipedia, the assignment of coordinates to
larger geo-entities follows the rules given there: for a settlement like a city,
it represents the center, for military and industrial establishments the main
gate, and for administrative districts it represents the head office!.

5.1. Harvesting Geo-Entities

YAGO2 harvests geo-entities from two sources. The first source is Wikipedia.
Wikipedia contains a large number of cities, regions, mountains, rivers, lakes,
etc. Many of them also come with associated geographical coordinates. We
harvest these with our extraction framework and retrieve coordinates for 191,200
geo-entities.

However, not all geo-entities in Wikipedia are annotated with geographical
coordinates. Furthermore, there are many more geo-entities than are known to
Wikipedia. Therefore, we tap into an even richer source of freely available geo-
graphical data: GeoNames (http://wuw.geonames.org), which contains data
on more than 7 million locations. GeoNames classifies locations in a flat cat-
egory structure, and each location is assigned only one class, e.g. Berlin is
a “capital of a political entity”. Furthermore, GeoNames contains information
on location hierarchies (partOf), e.g. Berlin is located in Germany is located
in Europe. GeoNames also provides alternate names for each location, as well
as neighboring countries. All this data is a valuable addition to YAGO, so we
make an effort to integrate it as completely as possible. This means that we
need to match the individual geo-entities that exist both in Wikipedia and Geo-
Names, so that we do not duplicate theses entities when extracting them from
the respective repositories.

5.1.1. Matching Locations
When processing Wikipedia articles, we try to match individual geo-entities,
proceeding as follows:

1. If the Wikipedia entity has the type yagoGeoEntity and shares its name
with exactly one entity in GeoNames, we match them.

2. If the Wikipedia entity has the type yagoGeoEntity and shares its name
with more than one entity in GeoNames, and we have coordinates for
the Wikipedia entity, we match it to the geographically closest GeoNames
entity — if its distance does not exceed 5km. Otherwise, we do not match
them.

L Guidelines from http://en.wikipedia.org/wiki/Wikipedia:WikiProject_
Geographical_coordinates, last accessed on 2011-06-30

13

3. In the end, we add all the unmatched GeoNames entities as new individ-
ual entities to YAGO2, together with all the facts about them given in
GeoNames.

Taking Berlin in Germany as an example, we find multiple geo-entities
in GeoNames that have the name “Berlin”. From Berlin’s Wikipedia article
we extract the coordinates 52°30'2” N, 13°23'56” E/, which is less than 3km
distance to the coordinates we find for one of the Berlin locations in GeoNames
(52°31'27" N, 13°24/37"E). We unify the two entities and add all further data
extracted from GeoNames — like alternate names and where Berlin is located —
to the existing YAGO?2 entity Berlin. Following this approach for all Wikipedia
articles, we unify 120,281 geo-entities. The rest of the GeoNames locations are
imported as they are.

5.1.2. Matching Classes

Matching individual locations is not enough to fully integrate GeoNames
into YAGO2, as in YAGO2 each individual needs to be typed. Fortunately,
GeoNames assigns a class to each location, which we can use as type. Again, to
avoid duplication of classes, we have to match them to existing classes. There
is prior work that aligns all GeoNames classes with WordNet classes (the back-
bone of the YAGO?2 class hierarchy), most notably, GeoWordNet [13]. However,
GeoWordNet relies on manual curation to accomplish correct matchings. This
approach is both time-intensive and fragile when either GeoNames or Word-
Net changes, something that will definitely happen in future releases of either
resource.

To counter this problem, we devised an automated matching algorithm. This
algorithm uses solely data that is readily available, namely the YAGO2 class
hierarchy, as well as textual descriptions for both YAGO2 classes and GeoNames
categories. The automated matching works as follows.

1. For every class from GeoNames, we identify a set of WordNet classes
from YAGO2 that have the same name as the GeoNames class (including
synonymous alternative names).

2. If there are no such classes, we do a shallow noun phrase parsing of the
GeoNames class name in order to determine the head noun (this is, e.g.,
“mine” for “gold mine”). We search for classes in YAGO2 that carry the
head noun as their name.

3. From the resulting YAGO?2 classes, we remove the ones that are not sub-
classes of yagoGeoEntity, as we know that GeoNames contains only geo-
graphical classes.

4. If only a single class remains, we return this one as the matching class.

5. If more than one class remains, we use the glosses describing the GeoNames
class and the YAGO classes, respectively. The glosses are tokenized, and
the Jaccard Similarity of the resulting bag-of-words is calculated between
the GeoNames-class gloss and each candidate’s gloss. The class with the
highest overlap is returned as best match.

14

6. If there is no overlap between the glosses at all, we return the

yagoGeoEntity class, making the mapping as general as possible.

Algorithm 1 shows pseudo-code for this method. Matched classes are added

to YAGO2 as subclass of the matched class, unmatched classes are added as
subclass of yagoGeoEntity, so we do not lose them.

Algorithm 1: Matching GeoNames to YAGO2 class

1

Input:
geo_class: GeoNames class with gloss
YAGO: set of YAGO classes, each class with synonyms syn,
preferred_meaning, and gloss
YagoGeo: set of YAGO classes with geographical meaning (manually
defined)
Output:
yago_class € YAGO (best match for geo_class)
begin
Cand < {y € YAGO | y or syn(y) = geo_class}
if Cand = () then
Cand < {y € YAGO | y or syn(y) = head(geo_class)}
if Cand =) then
L return no match

GeoCand <+ Cand N YagoGeo
if |GeoCand = 1| then
| return g € GeoCand
else if |GeoCand| > 1 then
Cand < GeoCand
L /* Cand contains original set or only classes with geo meaning */

best «— argmax.ccanq (jacc-sim(gloss(g), gloss(c)))
if jacc_sim(g,best) > 0.0 then
| return best
else
return yagoGeoEntity
L /* as default, map to general yagoGeoEntity class */

This matching process augments YAGO2 with over 7 million geo-entities and

over 320 million new facts from GeoNames, in particular adding geographical
coordinates that could not be extracted from Wikipedia, which renders more
entities accessible by spatial queries. Furthermore, GeoNames augments the
isLocatedIn hierarchy in YAGO2. Last, it also yields neighboring countries,
as well as alternative names for geographic entities. We use this information
for entities that do not exist in Wikipedia, but also augment entities extracted
from Wikipedia with alternate or foreign language names. For example, the
information that the “Peru-Chile Trench” is also called “Arica Trench” is not

15

present in Wikipedia.

5.2. Assigning a Location

We deal with the spatial dimension in a manner similar to the way we deal
with time, as described in Section 4: we assign a location to both entities and
facts wherever this is ontologically reasonable and wherever this can be deduced
from the data. The location of facts and entities is given by a geo-entity. For
example, the location of the Summer of Love is San Francisco, which is an
instance of yagoGeoEntity.

5.2.1. Entities and Location

Many entities are associated with a location. For example, events take place
at a specific place, organizations have their headquarters in a specific city, and
works of art are displayed in a museum. We have such spatial data in our
knowledge base for the following types of entities:

Events that took place at a specific location, such as battles or sports compe-
titions, where the relation happenedIn holds the place where it happened.

Groups or organizations that have a venue, such as the headquarters of a
company or the campus of a university. The location for such entities is
given by the isLocatedIn relation.

Artifacts that are physically located somewhere, like the Mona Lisa in the
Louvre, where the location is again given by isLocatedIn.

The semantics of such relations varies, but instead of treating each case sepa-
rately, we define a new relation to treat all entities in a uniform way: placedIn.
Both isLocatedIn and happenedIn are defined as sub-properties of this new
relation, and the YAGO2 infrastructure generates the placedIn facts for each
entity type where it can be deduced from the knowledge base.

5.2.2. Facts and Location

Some facts also have a spatial dimension. For example, the fact that Leonard
Cohen was born in 1934 happened in his city of birth, Montreal. Naturally,
not all facts have a spatial dimension: for example, schema-level facts such as
subclassOf or identifier relations such as hasISBN have no location on Earth.
We introduce the relation occursIn, which holds between a (reified) fact and a
geo-entity. For example, if we have the fact #1: LeonardCohen wasBornOnDate
1934, we would write its location as #1 occursIn Montreal. Again, the key
to a semantically clean treatment of the spatial dimension of facts lies in the
relations. We distinguish three cases where we can deduce an ontologically
meaningful location.

Permanent Relations. As defined in Section 4.2, permanent relations are
those relations that imply a direct association with the entity. If the
described entity has a permanent location, so has the fact that describes

16

it. We use the following two implication rules, where the first transfers
the location of the entity to the fact, and the second transfers the entity
itself if it is a geo-entity:

$id: $s $p $o;
$p type permanentRelation;
$s placedIn $1

$id occursIn $1

$id: $s $p $o;
$p type permanentRelation;
$s type yagoGeoEntity

$id occursIn $s

Take for example the 2006FIFAWor1dCup. Assume that we extracted from
the Wikipedia infobox that 2006FIFAWorldCup happenedIn Germany.
We want to propagate this location to all associated facts with a
permanentRelation. For example, for id: 2006FIFAWor1dCup isCalled
FootballWorldCup2006, we associate the meta-fact id occursIn
Germany.

Space-Bound Relations. Some facts occur in a place that is indicated
by their subject or object. For example, the fact that Bob Dy-
lan was born in Duluth happened in Duluth. We introduce two
new classes to describe such relations, relationLocatedByObject and
relationLocatedBySubject, which are both subclasses of yagoRelation.
The first class combines relations whose location is given by the location
of their object. These include for example wasBornIn, diedIn, worksAt,
and participatedIn. The second class groups relations whose location is
given by the subject, e.g. hasMayor. Then, we can transfer the location
of the fact argument to the fact itself by the following two rules:

$id: $s $p $o;
$p type relationLocatedByObject;
$o type yagoGeoEntity

$id occursIn $o

$id: $s $p $o;
$p type relationLocatedByObject;
$0 placedIn $1

$id occursIn $1

(correspondingly for relationLocatedBySubject)

The first rule fires for facts that directly concern geo-entities. For exam-
ple, it would infer the (trivial but correct) meta-fact #1 occursIn Duluth
for the fact #1: BobDylan wasBornIn Duluth. The second rule fires for

17

entities that are not geo-entities but do have a physical location. For ex-
ample, the second rule will infer that the location of the fact FrenchEmpire
participatedIn BattleOfWaterloo is Waterloo, assuming that we know
that BattleOfWaterloo is located in Waterloo. Note that these rules will
only fire if the subject or object indeed has a known location.

Tandem Relations. Some relations occur in tandem: One relation determines
the location of the other. For example, the relation wasBornOnDate de-
fines the time of the corresponding wasBornIn fact, and the latter de-
fines the location of the former. We express this tandem situation by
the relation timeToLocation, which holds between two relations. The
first relation specifies the time of the event while the second specifies
the location. Examples for such pairs are wasBornOnDate/wasBornIn,
diedOnDate/diedIn and happenedOnDate/happenedIn. The following
rule can transfer the location from one relation to the other

$id1: $s $p $t;
$p timeToLocation $r;
$id2: $s $r $1;
$id2 occursIn $1;

$id1 occursIn $1

For example, given the facts #1: BobDylan wasBornOnDate 1941-05-24
and #2: BobDylan wasBornIn Duluth, the space-bound relation
wasBornIn will first deduce #2 occursIn Duluth. The tandem pair
wasBornOnDate/wasBornIn will then deduce #1 occursIn Duluth.

These rules derive a location for a fact whenever this is semantically meaningful.

6. (Con-)Textual Data in YAGO2

YAGO2 does not just contain a time and a location for facts and entities,
but also meta information about the entities. This includes non-ontological data
from Wikipedia as well as multilingual data.

6.1. Non-Ontological Data from Wikipedia

For each entity, YAGO2 contains contextual information. This context is
gathered by our extractors from Wikipedia. They include the following relations,
with an entity and a string as arguments:

hasWikipediaAnchorText links an entity to a string that occurs as anchor
text in the entity’s article.

hasWikipediaCategory links an entity to the name of a category in which
Wikipedia places the article. These include not just the conceptual cate-
gories that form the YAGO taxonomy, but also all other categories.

18

hasCitationTitle links an entity to a title of a reference on the Wikipedia
page. Wikipedia often references external works for reasons of verifiabil-
ity. The titles of these cited references form another source of contextual
information.

All of these relations are sub-properties of the relation hasContext. This
relation provides a wealth of keywords and keyphrases associated with the entity.
We extract more than 82 million context facts for the YAGO2 entities in total.
We will see in Section 7 how the context can be used as an additional means
for searching knowledge in YAGO2.

6.2. Multilingual Information

For individual entities, we extract multilingual translations from inter-
language links in Wikipedia articles. This allows us to refer to and query
for YAGO2 individuals in foreign languages. YAGO2 represents these non-
English entity names through reified facts. For example, we have the reified
fact #1: BattleAtWaterloo isCalled SchlachtBeiWaterloo with the associ-
ated fact #1 inLanguage German.

This technique works for the individuals in YAGO2, but not for the classes,
because the taxonomy of YAGO?2 is taken from WordNet, which is in English.
To fill this gap, we integrate the Universal WordNet (UWN) [14] into YAGO2.
UWN maps words and word senses of WordNet to their proper translations
and counterparts in other languages. For example, the French word “école”
is mapped to its English translation “school” at the word level, but only to
specific meanings of school at the word-sense level, as the French word does
never denote, e.g., a school of fish or a school of thought. UWN contains about
1.5 million translations and sense assignments for 800,000 words in over 200
languages at a precision of over 90% [14]. Overall, this gives us multilingual
names for most entities and classes in YAGO2.

7. SPOTL(X) Representation

7.1. Drawbacks of Reification-based Models

In YAGO2, as in YAGO [9], we represent the time and location of facts
through reification. Each base-fact has an identifier, which in turn can be used
in the S or O role in another fact, a meta-fact. For example, suppose we know
the base-fact #1: GratefulDead performed TheClosingOfWinterland about
the rock band Grateful Dead. Adding knowledge about the place and time of
this concert is expressed by two meta-facts #2: #1 occursIn SanFrancisco and
#3: #1 occursOnDate 1978-12-31.

The YAGO query language allows writing SPARQL-like queries that include
fact identifiers. However, already a simple query for a location requires a large
number of joins. For example, if we want to find concerts that took place
near San Francisco, we need a rather convoluted query, consisting of five triple
patterns (separated by dots, the syntax of the SPARQL Where clause):

19

?id: ?s performed 7o

?7id occursIn 71

?1 hasGeoCoordinates 7g
SanFrancisco hasGeoCoordinates 7sf
?g near 7sf

Here, near is a proximity predicate (with a predefined distance of say 50
km) and 7id is a fact-identifier variable; we specify a join between the identifier
variable and the S component of another (meta-fact) triple. In the following, we
refer to such identifier-based joins as de-reification joins. To make this notion
more precise, consider a set of RDF triples with identifiers that can be used
in other facts using reification. These triples can be viewed as quadruples of
the form (id, s,p,0). A de-reification join is then a conjunctive query (in the
relational Datalog sense) with the same variable ?x appearing in the id role of
one sub-query and either the s or the o role of another sub-query. If we cast
all reified triples into a (virtual) relational table with schema R(Id,S, P,0),
then a de-reification join can be algebraically written as an equi-join of the
form R Mjq—g) R or R X;4—0; R. The semantics of de-reification joins are
thus well-defined in terms of query results for relational calculus (Datalog) or
relational algebra.

For a non-expert, it is not easy to come up with these five joins and the
proper use of location names, coordinates, etc. Conceptually, the query seems
to require only a single spatial join between concerts and places, but the tedious
SPARQL formulation has four joins between five triple patterns. In addition,
the lack of genuine support for data types for space and time makes it difficult
to express proximity conditions or temporal comparisons. Note that we already
helped ourselves by liberally introducing the near predicate, which is not really
available in our knowledge base and not supported by SPARQL.

7.2. SPOTL(X)-View Model

The key idea for making browsing and querying more convenient is to pro-
vide users and programmers with a de-reification-join view. Instead of seeing
only SPO triples and thus having to perform an explicit de-reification join for
associated meta-facts, the user should see extended 5-tuples where each fact
already includes its associated temporal and spatial information. We refer to
this view of the data as the SPOTL view: SPO triples augmented by Time and
Location. We also discuss a further optional extension into SPOTLX 6-tuples
where the last component offers keywords or key phrases from the conteXt of
sources where the original SPO fact occurs. The context component caters to
those cases where users have a good intuition about their information need,
but have problems casting it into triple patterns (e.g., because they lack profi-
ciency with the knowledge base and its relations), or, are faced with too large
a query result that they need to narrow down. In such situations, being able to
query both fact triples and associated text in a combined manner often proves
to be very useful [15]. For example, we may desire augmenting a triple pattern
like ?s performed 7o with a keyword condition like "psychedelic rock jam
session" which cannot be cast into a crisp ontological fact.

20

The situation that our knowledge base now contains well-defined temporal
and spatial information for base-facts, as described in Sections 4 and 5, simpli-
fies the construction of the SPOTL(X) view. In detail, it is composed of the
following — virtual — relations:

R(Id, S, P,0) — all (id, s, p, 0)-tuples in the knowledge base.

T(Id, TB,TE) — all (id,tp,t.)-tuples that associate the time interval [tp,]
with the fact identified by id. The tp-component is set using the
occursSince relation; the t.-component is set using the occursUntil
relation. Our definitions in Section 4 guarantee that this can be done
unambiguously and consistently. The ¢,- or {.-component might not be
set, if there is no corresponding meta-fact in our knowledge base. In that
case, the respective component assumes a NULL value whose appropriate
interpretation is deferred until query-processing time.

L(Id,LAT,LON) - all (id,lat,lon)-tuples that associate the location
< lat,lon > (i.e., a pair of latitude and longitude) with the fact identi-
fied by id. The [-component is set using the occursIn relation to retrieve
the location and hasGeoCoordinates to retrieve its coordinates.

X (Id,C) — all (id, c)-tuples that associate a context ¢ with the fact identified
by ¢d. The c-component is based on the hasContext relation, applied to
both the subject and the object of the fact. The hasContext relation was
introduced in Section 6.1. The range of the c-component is a set of words
or phrases by forming the union of the strings from the various relations
that underlie hasContext (or alternatively, a bag of words or phrases if
we want to consider frequencies of repeated strings).

Based on these building blocks we define the SPOTL(X) view as

TR.1d,[TB,TE], <LAT,LON>, C) (B> (ra=1a) T) M(ra=ra) L) X (ra=ra) X) ;

joining facts from R with their associated information from 7', L, and C. Here,
2 denotes an outer join, to avoid losing triples that do not have spatio-temporal
or contextual facts and instead producing NULL values in the respective fields.
Figure 1 shows a SPOTL(X) view as it could be determined for our introduc-
tory example. Note that, in the figure, we employ the short-hand notation
[1978-12-31] to denote the time interval [1978-12-31, 1978-12-31] and
present content excerpts that are not mentioned in our introductory example.

Id S P O T L X
idl1 GD performed TCOW 1978-12-31 -37.5, 122.3 “Wall of Sound...”
id2 idl1 occursIn SF “Golden Gate...”

id3 id1 occursOnDate 1978-12-31

Figure 1: SPOTL(X)-View Example: Grateful Dead performing “The Closing of Winterland”
in San Francisco on New Year’s Eve of 1978

21

7.3. SPOTL(X) Querying

The SPOTL(X) view defined above associates facts with canonical time and
space information and, as we describe now, avoids most de-reification joins. Be-
yond that, time and space are special dimensions with inherent semantics that
remain hidden to standard triple-pattern queries. Finding all actors who were
born near Berlin after the German reunification, for instance, is hard to ex-
press. The lack of genuine support for data types time and space forces users to
“paraphrase” the query (e.g., by asking for birth places located in the same fed-
eral state as Berlin). Second, Berlin and German reunification, in our example,
refer to a specific location (i.e., <48.52, 2.20>) and time (i.e., [1990-10-03]),
respectively. When using standard triple-pattern queries, though, getting to
this referred time and space would again require (de-reification) joins and a
deep comprehension of the knowledge base and its relations. Our SPOTL(X)
query interface, which we describe now, addresses these issues and is designed
to operate directly on the SPOTL(X) view.

Dimension Predicate Valid Examples

Time overlaps [1967, 1994] [1979, 2010]
during [1967, 1994] [1915, 2009]
before [1967, 1994] [2000, 2008]
after [1967, 1994] [1939, 1945]

Space westOf <48.52, 2.20> <52.31, 13.24>

northOf <48.52, 2.20> <41.54, 12.29>
eastOf <48.52, 2.20> <51.30, 0.70>
southOf <48.52, 2.20> <59.20, 18.30>
nearby <48.52, 2.20> <48.48, 2.80> 25.00

3

conteXt matches ¢...cowboys in Mexico...’’ (+cowboys)

“¢...her debut album...’’ (+debut -live)

Table 1: Predicates supported for Querying the SPOTL(X)-View

To deal with the important dimensions of time, space, and context and
to make their inherent semantics accessible to users, we introduce the predi-
cates given in Table 1. Our time predicates are a subset of those identified by
Allen [16]. We include spatial predicates that reflect the relative position of two
locations, as well as nearby, which tests whether the geographic distance be-
tween the two locations is below a given threshold (e.g., 25.0 km). The matches
predicate for the context dimension tests whether the context matches a given
keyword query that consists of mandatory and forbidden terms (e.g., +debut
-live).

Queries can add one predicate from each dimension to every triple pattern.
Patterns may thus be of arity up to six. Consider, as an example, the query

?p directed ?m after [1970] matches (+cowboys +mexico)

22

that finds directors of movies made after 1970 having something to do with
cowboys in Mexico (as captured by the context condition).

Often, the time or location of interest (e.g., [1970] above) would not be
known explicitly, but be associated with an entity. When using standard triple-
pattern queries, this is a frequent cause of (de-reification) joins, as explained
above. In our SPOTL(X) query interface, time and space can be specified
implicitly through an associated entity — a major improvement in query conve-
nience. For example, the query

GeorgeHarrison created 7s after JohnLennon

identifies songs written by George Harrison after John Lennon’s death. When
processing the query, the entity JohnLennon is transparently replaced by its
associated time interval [1940-10-09, 1980-12-08] that is determined as de-
scribed in Section 4. Here, we compare time intervals with the semantics that
[b1, e1] precedes [be,es] if e; < be. This condition is satisfied for the creation
times (intervals that span only one day, or month or year if this is the best
known resolution) following the existence time of John Lennon. To see how
this improves querying convenience, consider the following, much more tedious,
triple-pattern formulation for the same information need:

GeorgeHarrison created 7s
?s wasCreatedOn 7tl
JohnLennon diedOn 7t2

?7tl after 7t2

The possibility to specify time and space implicitly through an entity name,
in combination with our context dimension, allows for intuitive and powerful
queries, such as

?p isA Guitarist matches (+left +handed)
?p wasBornIn 7c nearby Seattle 25.0

that identifies left handed guitarists who were born in the vicinity of (i.e., at
most 25 km away from) Seattle. Good results should include Jimi Hendrix.

Our query interface, as an additional feature, supports referencing entities
by noun phrases that refer to their canonical name, which is particularly useful
if the specific entity name is unknown to the user. Thus, the query

"Bobby Dylan" created ?s before "Knocking on Heaven’s Door"

identifies all songs that Bob Dylan wrote before Knocking on Heaven’s Door.
To this end, we leverage the means relation to map the phrases “Bobby Dy-
lan” and “Knocking on Heaven’s Door” to the entities named BobDylan and
Knockin’OnHeaven’sDoor, thus also retrieving the time span [1973-07-13,
##-##-##] associated with the song. Note the subtle differences between in-
put phrases and official entity names. Here we exploit the means relation that
provides a rich repertoire of alternate names including multilingual ones. The
pseudo-constant ####-##-## indicates that the end boundary of the time inter-
val is unknown. This has no effect when evaluating the query at hand, given

23

that the before predicate only considers the begin boundary of the time inter-
val. Putting all features together, our initial information need related to actors
can be satisfied by issuing the query

?p isA actor
?p wasBornIn 71 nearby Berlin 10.0
?p wasBornOnDate 7d after "German reunification"

More elaborate examples are available in [17], which also discusses the query
interface in more detail. Our concrete implementation of the SPOTL(X) query
interface builds on PostgreSQL as a relational database system. The SPOTL(X)
view is materialized into a single table of 7-tuples (SPOTLX plus ids). To
achieve good response times, we adopt ideas put forward in recent work on the
efficient triple store RDF-3X [18]. We build auxiliary B*-Tree indexes for all six
permutations of the SPO columns. For the additional columns, corresponding to
the time, space, and context dimension, we build additional indexes specifically
suited to the respective data type. For the space dimension we use the freely
available PostGIS extension (http://postgis.refractions.net) to build a spatial
index (based on GiST [19]). We build two additional B*-Tree indexes to deal
with the time dimension. Finally, to support efficient evaluation of our matches
predicate on the X column, we employ PostgreSQL’s built-in text-indexing func-
tionality.

8. Factual Evaluation and Numbers

Our main goal for the construction of the YAGO2 ontology was near-human
accuracy. This section presents an evaluation of the knowledge base quality. In
the ideal case, we would compare the data in YAGO2 to some prior ground truth.
Such ground truth, however, is only available for a small subset of YAGO2,
namely the GeoWordNet matching of GeoNames classes onto WordNet synsets.
We will describe this evaluation in Section 8.2. For the rest of the facts in
YAGQO?2, there is no pre-existing ground truth, so we had to rely on human
judgement for sampled facts.

8.1. Facts from Wikipedia

We conducted an extensive evaluation of the facts extracted from Wiki-
pedia. Our evaluation concerns only the base facts of YAGO2, not the facts
derived by implication rules. It only considers the “semantic” relations (such as
wasBornOnDate) and not the “technical” relations (such as hasWikipediaURL).
In our methodology [9], human judges are presented with randomly selected
facts, for which they have to assess the correctness. Since the judges might not
have enough knowledge to assess each fact, the Wikipedia page from which the
fact was extracted is presented next to the fact. Thus, the judges evaluate the
correctness of YAGO2 with respect to the content of Wikipedia. We do not
assess the factual correctness of Wikipedia itself. We used the Wikipedia dump
from 2010-08-17 for the YAGO2 extraction and evaluation.

24

Relation #Total Facts #Evaluated Accuracy

actedIn 126,636 69 97.36% 4 2.64%
created 225,563 94 98.04% =4 1.96%
exports 522 113 93.22% + 4.32%
graduatedFrom 15,583 57 96.84% + 3.16%
hasExport 161 61 95.50% £ 4.21%
hasGender 804,747 50 94.58% 4 5.07%
hasGivenName 746,492 134 97.16% £ 2.43%
hasLatitude? 311,481 47 96.22% + 3.78%
holdsPoliticalPosition 3,550 81 94.20% =+ 4.53%
influences 18,653 58 95.28% £ 4.42%
isInterestedIn 296 93 92.85% =+ 4.83%
isMarriedTo 27,708 58 96.89% +3.11%
subclassOf 367,040 339 93.42% +2.67%
type 8,414,398 208 97.68% £ 1.83%

Table 2: Evaluation of non-temporal, non-spatial facts extracted from Wikipedia

For a detailed picture of the accuracy of YAGO2, we formed pools of facts.
We formed one pool for each relation, i.e., one pool with all wasBornIn facts,
one pool with all wasBornOnDate facts, etc. For each pool, we drew random
samples of facts. Then, we had the judges evaluate the correctness of the facts
in the sample. This allowed us to estimate the overall correctness of the facts in
the pool. One pool may contain facts extracted by different extraction patterns.
Since samples were randomly drawn, we expect the distribution of extraction
patterns in the sample to represent the distribution of patterns in the pool.

26 judges participated in our evaluation. Over the course of a week, they
evaluated a total number of 5864 facts. This gave us an accuracy value for each
sample. We estimate the accuracy of the entire pool by the fraction of samples
that were assessed as true, and we compute a Wilson confidence interval [20]
for each pool. We kept on evaluating until the confidence interval was smaller
than +5%. This ensures that our findings are statistically significant.

Table 2 describes the results for some of the important non-temporal, non-
spatial relations. Table 3 shows three relations with best and worst accuracy,
respectively. Table 4 finally shows the results for temporal and spatial relations.
Results for all relations are available at http://www.yago-knowledge.org.

The evaluation shows the very high accuracy of our extractors. The vast
majority of facts, 97.80%, were judged correct. This results in an overall Wilson
center (weighted average over all relations) of 95.40% with a width of +3.69%.

The crucial taxonomic relations are type (categorizing the individuals into
classes) and subclass0f (linking a subclass to a super-class). Both relations

2hasLatitude is extracted from Wikipedia only, hasGeoCoordinates combines Wikipedia
coordinates and GeoNames coordinates.

25

Relation #Total Facts #Evaluated Accuracy

created 225,563 94 98.04% 4 1.96%
diedIn 28,834 88 97.91% = 2.09%
happenedOnDate 27,563 94 97.86% £ 2.14%
hasHeight 26,477 120 91.99% =+ 4.59%
hasBudget 547 95 90.97% + 5.41%
hasGDP 175 93 90.79% =+ 5.52%

Table 3: Evaluation of best and worst relations

Relation #Total Facts #Evaluated Accuracy

diedIn 28,834 88 97.91% % 2.09%
diedOnDate 315,659 79 97.68% =+ 2.32%
happenedIn 11,694 51 96.50% =+ 3.50%
happenedOnDate 27,563 94 97.86% £ 2.14%
isLocatedIn 436,184 51 96.50% =+ 3.50%
livesIn 20,882 56 96.79% =+ 3.21%
wasBornIn 90,181 49 96.36% =+ 3.64%
wasBornOnDate 686,053 56 96.79% + 3.21%
wasCreatedOnDate 507,733 110 97.43% 4+ 2.41%
wasDestroyedOnDate 23,617 72 96.15% + 3.61%

Table 4: Evaluation of temporal and spatial relations

have a Wilson center of about 95%, demonstrating the highly accurate integra-
tion of both resources. Relations between individuals, such as graduatedFrom,
influences, or isMarriedTo are of even higher accuracy, as they are based on
Wikipedia links between articles, which are of very good quality.

The relations that link individuals to classes, such as isInterestedIn or
exports/imports, are of lower accuracy. The problem is that the extractors do
not only have to extract the class name correctly, but they also have to disam-
biguate the class to the correct WordNet class. This is done by the same algo-
rithm that links a Wikipedia category head noun to the corresponding WordNet
synset (see Section 2). For example, the fact UnitedStates imports medicine
is wrong if medicine is matched to the WordNet class “the branches of medical
science that deal with nonsurgical techniques”, instead of the correct “some-
thing that treats or prevents or alleviates the symptoms of disease”. Another
source of errors are incorrectly formatted literals in Wikipedia — handling all
possible ways of formatting e.g. a date is nearly impossible. Still, even these
difficult extractions show an accuracy of at least 90%.

To estimate inter-annotator agreement, we had a random sample of 10% of
the facts evaluated by 2 judges instead of one. We computed Fleiss’ Kappa [21]
as a measure of the agreement. The Kappa value is 0.37, which is generally

26

regarded as fair agreement. In general, Fleiss’ Kappa tends to have lower values
if the distribution of the assessment labels is skewed [22]. In our case, the
distribution is highly skewed, as more than 97% of the assessments have the
label “true”. Using the test procedure and the variance estimator described
by Fleiss [21], we find that we can reject the null hypothesis that there is no
agreement among annotators beyond chance, at any significance level larger
than 7%. Speaking in absolute numbers, the judges disagreed on only 10 out of
the 586 sample facts, a fraction of 1.7%.

8.2. GeoNames Matching

We evaluated the automated class matching (Section 5.1.2) with the
GeoNames-WordNet matches of GeoWordNet [13] as ground truth. We found
that we match 86.7% of GeoNames to YAGO2 classes. This match has a very
high precision of 94.1% — similar to the accuracy of our YAGO2 extractors. As
WordNet’s sense inventory is very fine-grained, some of the wrong matches are
actually still valid. Consider “library” as an example: GeoWordNet matches
this to the WordNet “library” sense described by “a building that houses a col-
lection of books and other materials”. Our automated approach matches it to
“library” described by “a depository built to contain books and other materials
for reading and study”. We count this mapping as error, so the precision is in
fact even higher than the 94.1% we find by comparing against GeoWordNet.

8.8. Size of YAGO2

YAGO2 contains a huge number of facts from Wikipedia. The number of
locations we integrate from GeoNames, as well as the multilingual class names
imported from Universal WordNet (UWN) [14] further increase this number.
We give numbers for the core of YAGO2 (without entities from GeoNames or
facts from UWN), as well as for the full YAGO extension with everything in-
cluded, in Table 5. Note that even when not including all GeoNames entities,
we still extract the facts (e.g. to augment the isLocatedIn hierarchy), asso-
ciating them with Wikipedia entities we could match to GeoNames. Table 6
breaks down the numbers by interesting classes of entities. Table 7 gives the
number of time/location meta-facts, broken down by single relations in Table 8.
Finally, Table 9 gives the numbers of base-facts (facts between entities, such
as wasBornIn, interestedIn, type, or subclass0f and of semantic meta-
facts, which are either extracted from Wikipedia (facts about facts, such as
occursSince), or deduced by our rules in Section 4 and 5. Furthermore, there
are one or more provenance facts for each of these semantic facts, which capture
where, when, and how a fact has been extracted. Without GeoNames, there
are 480 million provenance facts, and more than 1.6 billion when including Geo-
Names.

27

Type # in YAGO2 # incl. GeoNames

Classes 365,372
Entities 2,648,387
Facts 124,333,521
Relations 104

365,372
9,756,178
447,470,256

114

Table 5: YAGO size for core and full extension

Class #Entities % existence time % existence location
People 872,155 80.46 -
Groups 316,699 38.46 24.03
Artifacts 212,003 58.91 1.78
Events 187,392 60.16 16.01
Locations 687,414 13.34 100
Other 372,724 24.99 2.25
Total 2,648,387 47.05 30.62

Table 6: Number of entities by class, percentage associated with existence time/location

Relation #Facts
occursSince/Until 30,820,228
occursln 17,148,596

Table 7: Number of time and location meta-facts

relation #Total Facts % occur. times % occur. locations
created 225,563 89.26 -
diedIn 28,834 99.56 100
diedOnDate 315,659 100 9.09
directed 38,184 98.81 -
endedOnDate 23,546 100 18.94
happenedOnDate 27,563 100 18.73
participatedIn 15,932 - 87.66
produced 23,769 99.17 -
startedOnDate 28,862 100 20.29
wasBornln 90,181 97.14 100
wasBornOnDate 686,053 100 12.77
wasCreatedOnDate 507,733 100 <0.01
wasDestroyedOnDate 23,617 100 <0.01
worksAt 2,954 - 86.46

Table 8: Ratio of facts associated with occurrence times and locations per relation

28

Type #Total Facts # incl. GeoNames and Context

base facts 35,642,122 185,459,298
semantic meta-facts 88,691,399 262,010,958
total 124,333,521 447,470,256

Table 9: Number of base-facts and meta-facts in YAGO2

29

9. Task-Based Evaluation

The time, location, and context data in YAGO2 allow new tasks to be sup-
ported by a knowledge base that were previously infeasible or very cumbersome.
We present two exemplary tasks making use of the newly available data and
querying capabilities.

First, we use the new YAGO2 features to formulate (in a structured query
format) and answer questions of temporal or spatial nature. This task demon-
strates the usefulness and conciseness of the SPOTLX query language as well
as the availability of temporal, spatial, and contextual data to answer advanced
questions.

In the second task the new features are used for enhancing the task of dis-
ambiguating mentions of named entities in natural language text, mapping men-
tions to their corresponding canonical entities in the knowledge base.

9.1. Answering Spatio- Temporal Questions

Temporal or spatial relations play a big role in many question-answering
settings. In this task we focus on two existing collections of such questions:
the 15 questions of the GeoCLEF 2008 GiKiP Pilot?, and a sample of temporal
and spatial questions blocks from Jeopardy, available on J! Archive*. We first
formulate the questions in the new SPOTLX style in a way that we find natural,
then run these queries, and check the results for correctness. For GeoCLEF
GiKiP, the original questions did not come with a set of answers, so we judged
a query result against YAGO2 correct if it contained at least one correct answer.

Note that this task is merely an exemplary study, not a comprehensive eval-
uation. It serves to demonstrate the potential value of the spatio-temporal
knowledge in YAGO2. For full-fledged natural-language QA, we would need an
automatic mapping from questions to structured queries (see, e.g., [23] for work
along these lines). For systematic evaluation, we would need a broader set of
questions and comparison to state-of-the-art systems.

9.1.1. GeoCLEF GiKiP

The original intent of the GeoCLEF GiKiP Pilot is: “Find Wikipedia entries
/ articles that answer a particular information need which requires geo- graphical
reasoning of some sort.” [24]. The geographical reasoning part makes the 15
questions good candidates for mapping onto SPOTLX queries. All questions,
their formulations and their results from YAGO?2 are listed in Appendix A. As
an example, consider question GP13 (the original question is followed by our

Shttp://www.linguateca.pt/GikiP/
dhttp://www. j-archive.com/

30

formulation as a SPOTLX query):

Relevant documents describe navigable Afghan rivers whose length is
greater than one thousand kilometers.

?x isA river locatedIn Afghanistan .
7x hasLength 71 .
?1 isGreaterThan 1000km

The result is Amu Darya, a major river in Central Asia, part of which flows
through Afghanistan. As this is a correct answer to our formulation, we con-
sider this query as successful. There are three more questions, GP5, GP7, and
GP10, which we formulated as straightforward SPOTLX queries and could use
to obtain correct results.

In other cases, we needed some creativity in formulating the query, including
the use of keywords in the conteXt part of a SPOTLX query. An example is
the question GP1:

Name the waterfalls that have been employed in any of the several
adaptations of Fenimore Cooper’s book “The Last of the Mohicans”
to cinema.

?x isA waterfall matches (+last +mohicans)

YAGO2 does not contain any relations about scene locations in movies, but
reformulating the constraint on the movie as a keyword condition yields two
correct results. This demonstrates the usefulness of the context part of SPOTLX
when structured data is not available. Other questions that returned correct
results using keywords in their query are GP/ and GP8. Note that although
we manually identified the keywords for the conteXt part of these queries, this
relaxation could easily be automated by generating keyword counterparts to
structured conditions, one at a time, whenever a more structured formulation
does not return the desired results. Further note that this approach is quite
different from conventional methods for natural-language QA where the entire
question is mapped into a keywords-only query for a search engine or on specific
text corpus. Our approach still harnesses the rich type system for entities and
aims to preserve as many structural conditions as possible. A pure keywords
query like “waterfalls last mohicans cinema fenimore cooper” would usually not
work (depending on the underlying corpus).

There are also questions which we can formulate perfectly, but we do not
have any correct entity or fact in the knowledge base; an example is question
GP15:

Find articles about bridges in France whose construction started, con-
tinued or ended in or between 1980 and 1990.

?x isA bridge nearby Bourges,400km .
?x wasCreatedOnDate ?d during 1980,1990

31

We used Bourges as a “geographical center” of France. Unfortunately, all
the bridges that have coordinates associated were not constructed in that time
interval. GP6, GP9, GP11, GP12, and GP1j are further questions of this
kind. Obviously, no knowledge base can ever be complete, and these advanced
questions happened to hit some blank spots in YAGO2.

Out of the 15 questions, there were only two that we could not formulate at
all: GP2 “Find documents about people who have belonged to or are considered
affiliated with the Vienna circle but who are not Austrian or German”. This
question contains a negation predicate, which is not supported in our query
language. The other one is GP3: “Relevant documents describe rivers in Por-
tugal that have cities with a population higher than 150,000 people along their
banks”, where we lack the relation of rivers flowing through cities, something
that cannot be captured appropriately using keywords.

Altogether we observed:

e 4 questions working perfectly;

e 3 questions working when relaxing a geographical condition from struc-
tural to keyword conditions — resulting in a less precise but still useful
result set;

e 6 questions that could be well formulated as SPOTLX queries but did not
return any good result for the limited coverage of the knowledge base;

e 2 questions that could not be properly formulated at all.

Note that this result, albeit far from perfect, could not have been achieved
with the original YAGO. The geographic and temporal knowledge of YAGO2,
the keyword context of entities, and the SPOTLX capabilities were crucial for
successful query formulation.

The original competition at CLEF 2008 from which we adopted our queries,
had three participating systems [24, 25]. One of them was a semi-automatic sys-
tem and critically relied on human guidance in a multi-stage procedure. Among
the other two systems, one performed poorly and could find answers to only 4 of
the 15 queries, and had generally low precision over all retrieved answers (about
10 percent). The third system, WikipediaQAList, achieved very good results.
It found good answers to 14 of the 15 queries, and had an overall precision of
about 63 percent. In comparison to our YAGO2-based results, this is much bet-
ter. However, one has to consider that WikipediaQAList is highly tailored to the
task at hand: list questions, formulated in a particular style, and evaluated by
a carefully designed procedure over Wikipedia categories with link-based filters.
YAGQO?2, in contrast, is a general purpose ontology. It was not designed in any
way with the CLEF competition in mind. Our study merely demonstrates the
off-the-shelf usefulness of YAGO2 in combination with SPOTL(X) querying and
is meant to provide background information. An apples-vs.-oranges comparison
between our case study and the actual participants in the CLEF 2008 task is
meaningless, as they have very different goals and assumptions.

32

Type Category Correct Nearly Correct NA

Name the Decade 3(2) 0 (0) 2 (3)
Temporal Died on the same day 4 (1) 1(1) 0 (3)
The 19th Century 2 (0) 2 (1) 1(4)
Canadian Geography 4 (1) 1(1) 0 (3)
Spatial Urban 1 (0) 4 (0) 0 (5)
American Towns & Cities 3(1) 2 (0) 0 (4)
Total 17 (5) 10 (3) 3 (22)
Percent 57% (17%) 33% (10%) 10% (73%)

Table 10: Jeopardy questions answered with SPOTLX queries (numbers in parentheses are
answered with the original YAGO data and SPO-only queries)

9.1.2. Jeopardy

The Jeopardy quiz show recently obtained attention in the computer science
field, because IBM’s Watson system [26] participated in one of the shows and
won against two human champions. Jeopardy questions are grouped in cate-
gories, each comprising 5 questions. We chose three such blocks with temporal
questions, and three blocks with spatial questions, a total of 30 questions. All
questions could be formulated using SPOTLX queries. An overview of the ques-
tion categories and how many questions could be correctly answered by YAGO2
is given in Table 10.

In the case of Jeopardy we counted a question as correctly answered if the
SPOTLX query gave exactly the correct answer and no other results. An ex-
ample is this question:

In June 1876 George Custer made his last stand at the Battle of this
river.

?x isa battle overlaps 1876-06 matches (+George +Custer) .
?x happendIn ?r .
?r isa river

It returns the correct result Battle of the Little Bighorn.

Nearly correct cases are questions for which we obtained the correct result
among other results, or where we could not formulate the geographical or tem-
poral condition with structured conditions only but needed to include keyword
conteXt conditions. An example is:

Montana State University has a branch in this city named for fron-
tiersman John.

7k means 7x locatedIn Montana matches (+Montana +State
+University) .

7?8 hasFamilyName 7k .

?s hasGivenName John

We could not formulate that the university is located in the city, but added

33

this condition as a keyword associated with a permanent relation of the city
in question. Also, the correct result John Bozeman was not the only result
returned.

We classified questions as not expressible (NA) if we could not formulate
them appropriately as SPOTLX queries, using the available relations and pred-
icates, and thus could not obtain any correct result.

In some cases, we found that we were missing specific relations necessary
to answering the question, e.g. hasLength, which we then added. Other use-
ful relations we identified were namedAfter and flowsThrough, but the semi-
structured data in Wikipedia is too sparse to extract enough facts for these.

As with the GeoCLEF GiKiP questions, the spatio-temporal and contextual
extensions of YAGO?2 are crucial assets to answer most of the Jeopardy ques-
tions. Table 10 shows the improvement over the original YAGO knowledge base:
73% of the questions could not be expressed with the original YAGO, either due
to lack of querying capabilities or due to lack of data. With YAGO2, only 10%
of the questions were left unanswered.

9.2. Improving Named Entity Disambiguation by Spatio-Temporal Knowledge

The task of mapping mentions of named entities, such as persons, locations
or organizations, in natural language text onto canonical entities registered in
a knowledge base is called named entity disambiguation. It is a necessary step
when extracting facts from natural language text (see, e.g., [27]), but also useful
in itself to annotate Web pages, news articles, or any other text with embedded
entities.

Named entity disambiguation for Wikipedia entities dates back to Bunescu
and Pasca [28], with substantial improvements by Cucerzan [29], Milne and
Witten [30], and Kulkarni et al [31]. The most basic measure for disambigua-
tion is the prior probability of a mention pointing to a certain entity, which
can be harvested from the Wikipedia link structure. When a mention is then
encountered in a text, for example, “Joey”, we can exploit the knowledge (from
Wikipedia) that it links to Joey (TV Series) in 49% of all cases, and with a
3% probability to Joey (Bob Dylan song). This approach always chooses the
most prominent entity for a given mention string. Key to improving this prior
is to consider the context of a mention. For example, consider the sentence
“Dylan performed Hurricane about the black fighter Carter, from his album
Desire. That album also contains a duet with Harris in the song Joey.” Here,
the tokens “song”, “album”, and “performed” are strong cues for Joey (Bob
Dylan song) instead of the TV series.

To score entities based on their overlap with the context of a mention, each
entity is associated with keyphrases gathered in the YAGO2 hasContext re-
lation: link anchor texts, category names, and titles of works in the reference
section. These keyphrases are matched against the context surrounding a men-
tion in the text. In the above example, the keyphrase “Bob Dylan songs” is
associated with Joey (Bob Dylan song). It matches multiple parts of the con-
text, e.g. “Dylan” and “song”. The score for each keyphrase ¢ is calculated as
follows:

34

Zweq weight(w)

and the cover is the shortest span of tokens in the

(Zw€cover ’LUBZght(w)) ’
score(q) = z

__ # matching words
z= length of cover(q)’
context where all matching keywords occur. The weight of a keyword w is a

combination of mutual information between the keyword and the entity it is
associated to, as well as the standard idf weight. The score of an entity is then
calculated by summing up the scores of all its keyphrases. More details about
our keyphrase-based context similarity method are given in [32, 33].

Further improvements can be obtained by mapping mentions jointly rather
than one at a time. In the above example, if “Joey” is mapped to the song,
“Carter” should be mapped to Rubin Carter, the boxer also known as “Hur-
ricane”, and not Jimmy Carter, the president, overruling the most prominent
meanings for both mentions. Cucerzan [29] was the first to introduce this notion
of joint disambiguation of all entity mentions in a text. Kulkarni et al. [31] cast
the joint mapping approach into a factor-graph probabilistic model, approxi-
mated by linear programming. Our recent approach AIDA [32] casts the joint
mapping into a graph-theoretic problem, solving it with a greedy algorithm.

All of the previous approaches use the Wikipedia link structure as a measure
of coherence among entities. The measure introduced by [30] and also used by
[31] rates the relatedness of two entities based on the overlap of the set of
incoming links in Wikipedia, and is defined as follows:

where

IOg (maX(IINel |7 |IN62D) — 10g(|IN€1 n INEZ')
log(|N|) — log (min([I N, |, [I N,)

inlink_coh(ey,es) =1 —

if > 0 and else set to 0. N is the total number of entities in the knowledge base.
The more similar the set of entities linking to two given entities, the higher
the relatedness between these two. Other possibilities for measuring coherence
among entities include the distance of two entities in the type hierarchy. In
the task presented here, we make use of the temporal and spatial knowledge
available in YAGOZ2, to measure coherence in the following ways:

Spatial Coherence is defined between two entities e;,eo € FE with geo-
coordinates, where F is the set of all candidates for mapping mentions
in a text to canonical entities:

geo_coh(er, es) = great_circle_distance(coord(ey), coord(ez))

length_of_equator/2

This postulates that two entities that are geographically close to each
other are a coherent pair, based on the intuition that texts or text passages
(news, blog postings, etc.) usually talk about a single geographic region.

35

Temporal Coherence is defined between two entities e1,es € F with exis-
tence time:

|cet(e1) — cet(es)]

maze; ;e (|cet(e;) — cet(e;)|)

temp_coh(ey, es) =

where cet() is the center of an entity’s existence time interval, and the
denominator normalizes the distance by the maximum distance of any two
entities in the current set of entity candidates, e;,e; € E. The intuition
here is that a text usually mentions entities that are clustered around a
single or a few points in time (e.g., the date of an event in which several
people participated, thus posing the requirement that these entities must
have overlapping life spans).

Using these coherence measures, the input graph for the AIDA graph al-
gorithm is constructed by two kinds of nodes. One type of nodes represents
the entity mentions occurring in the input text, the other nodes are the candi-
date entities in the knowledge base. The edges between the mentions and their
respective entity candidates are weighted with a combination of the prior and
the similarity between the mention context and the entity context. The edges
between the entities are weighted either by the spatial coherence or the temporal
coherence measure, which indicates how strongly two entities are related. The
objective of the algorithm is to find a dense (highly weighted) subgraph in this
input graph that has only one mention-entity edge per mention, solving the dis-
ambiguation problem. This problem is computationally hard. We approximate
the solution using an efficient greedy algorithm, which aims to maximize the
minimum weighted degree of entity nodes in two phases: 1) iteratively remove
the node with the lowest weighted degree, and 2) run a local-search optimiza-
tion algorithm on the (usually much smaller) graph with the highest minimum
weighted degree found in any of the iterations.

9.2.1. Experiments

We experimentally evaluated the usefulness of spatial and temporal coher-
ence for named entity disambiguation on two datasets that we created from
Wikipedia samples: WikipediaLocation and WikipediaFEvent. Each of these is a
set of 50 randomly selected Wikipedia articles that contain a hyperlink with an
anchor text matching one the following terms:

WikipediaLocation: San Jose, Victoria, Springfield, Columbia, Georgia

WikipediaEvent: battle, attack, revolution, election, invasion

The terms were selected so as to construct articles with high ambiguity
among their entity mentions. There are many cities or states that share the
same name, and the common nouns for events may point to a wide variety of
concrete events, depending on the context that they are used in. A restric-
tion for an article to be selected was that the entity the hyperlink points to

36

WikipediaLocation WikipediaEvent

Number of Documents 50 50
Avg. number of words per article 2571 4303
Number of evaluated mentions 64 52
Avg. number of entities per mention 180.4 126.4

Table 11: Datasets for entity disambiguation task

prior sim sim + coherence

Accuracy on WikipediaLocation 40.00% 41.00% 61.00%
Accuracy on WikipediaEvent 13.33% 20.00% 53.33%

Table 12: Results of the Named Entity Disambiguation

must be a yagoGeoEntity with coordinates for the WikipediaLocation or an
event (wordnet_event_100029378) with an occurrence time for the Wikipedia-
Event. Otherwise the aspects of spatial or temporal coherence would not apply.
More details about the datasets are given in Table 11. We evaluated only the
mention-entity mappings for the anchor texts matching our WikipediaLocation
or WikipediaEvent term lists. Thus the focus was on the most difficult mentions.

We ran different configurations of our disambiguation framework on the
datasets, shown in Table 12. The accuracy is the fraction of the given mentions
correctly disambiguated onto the entity that the hyperlink really points to,
averaged over all 50 documents. The baseline is the prior, which chooses the
entity that links with this anchor text point to most often, e.g. for “Victoria”
it chooses Victoria, Australia, because 71% of all links with “Victoria” as
anchor text point to the Australian state. The accuracy that prior achieves is
low, especially for WikipediaEvent, where only 13% of the mappings are correct.
In general, however, the prior has been shown to be a fairly good baseline [32],
especially for Wikipedia link prediction [30]. The poor results here reflect the
difficulty of our choice of mentions in this evaluation task. The more powerful
method sim combines the prior with a keyphrase based similarity measure,
slightly improving the results for WikipediaEvent and WikipediaLocation, but
not significantly. Including spatial coherence on the WikipediaLocation dataset
and temporal coherence on the WikipediaEvent dataset improved the accuracy
by 20 and 33 percent points, respectively. This is a significant improvement
over both the prior and the keyphrase based similarity measure, with a p-value
of a paired t-test < 0.01.

For comparison, we also ran the experiments with the general-purpose co-
herence measure used in [32], based on Wikipedia in-link overlap between en-
tities. This approach achieved even better results with an accuracy of 83.33%
on WikipediaEvent and 79% on WikipediaLocation. This is not surprising, as
the Wikipedia link structure is very rich, and provides a strong asset for fine-
grained coherence measures. However, once we address situations where not all

37

entity candidates in a knowledge base are covered and richly featured in Wi-
kipedia, the link structure is not available for coherence measures. This is the
case for all entities in YAGO?2 that come from GeoNames and are not in Wi-
kipedia. GeoNames provides coordinates for every entity, though; so using the
spatial coherence is feasible and allows us to significantly improve the accuracy
of named entity disambiguation. The same argument holds for adding events to
the knowledge base: acquiring the existence time of an event from a news page
or event calendars on sports or concerts is not that difficult and may become a
standard case in maintaining knowledge bases. In contrast, Wikipedia is man-
ually maintained and curated; so adding such facts and appropriate hyperlinks
would require much higher effort. Moreover, it is unlikely that Wikipedia will
ever cover the “long tail” of named entities that appear in news, blogs, online
communities, and other Web pages (e.g., songs, artists, concerts, small-town
landmarks, etc.).

10. Related Work

10.1. Taxonomy Construction

YAGO?2 constructs a taxonomy from Wikipedia and WordNet. Our method
involves two stages: First, it links Wikipedia entities by a type (instanceOf)
relationship to suitable Wikipedia leaf category classes. Second, it links these
Wikipedia category classes by a subclassOf relationship to suitable WordNet
classes [2]. For this purpose, the system employs the algorithm that was pre-
sented in the original YAGO paper from 2007 [9], described in Section 2. Quite
a number of works have addressed similar tasks.

Wikipedia Tarxomonies. Some projects have constructed a taxonomy from the
Wikipedia category system alone [34, 8, 35, 7, 36]. WikiTaxonomy [34] (with im-
provements in [8]) introduced the idea of arranging the categories of Wikipedia
into a hypernymy hierarchy. The approach restricts itself to the Wikipedia cat-
egories only. Therefore, WikiTaxonomy’s goal is different from YAGQO’s, which
aims to establish consistent links between Wikipedia categories and WordNet
as WordNet is the most widely used computational lexicon of English in Natu-
ral Language [37]. Furthermore, WikiTaxonomy does not distinguish between
classes and instances, which is crucial in YAGO and adds substantial value. Fi-
nally, the noisy and inconsistent nature of Wikipedia’s non-leaf categories leads
WikiTaxonomy to construct a many-rooted taxonomy (with several thousand
unrelated roots), as opposed to the consistent and fully connected semantic
graph of YAGO.

A number of works have followed up on the WikiTaxonomy project. Zirn et
al. [35] take the WikiTaxonomy as input and decide whether a leaf node is an
instance or a class. In YAGO, we select only those Wikipedia categories that are
classes and take the instances from the Wikipedia articles instead. Among other
techniques, the approach of [35] uses the head word plural detection previously
described in the YAGO paper [9)].

38

Similarly to WikiTaxonomy, the WikiNet [36] project extracts a concept tree
from Wikipedia categories, as opposed to YAGQO’s goal of interlinking Wikipedia
and WordNet. Unlike YAGO, WikiNet does not distinguish between classes and
instances. WikiNet also extracts a rich set of relationships between entities.

Mapping WordNet and Wikipedia. Other projects are concerned with mapping
Wikipedia categories to WordNet senses [7, 37, 38].

Ponzetto et al. [7] map the Wikipedia categories of WikiTaxonomy to Word-
Net concepts. Among other techniques, their approach employs head word plu-
ral detection (as in the original YAGO). The authors find that the most frequent
names heuristic has a precision of 75%, while their techniques improve preci-
sion to 80%. The paper does not provide any discussion of how this relates to
YAGO'’s [9] precision of 97%. We believe that the striking difference in per-
formance is due to the fact that the method of [7] aims to map all categories
of Wikipedia to WordNet, while YAGO is concerned only with the leaf cate-
gories. YAGO limits itself to mapping leaf categories of Wikipedia, because it
aims to link with, not replace, WordNet. Non-leaf categories in Wikipedia carry
substantial noise and inconsistencies.

In a similar spirit, Toral et al. [38] map Wikipedia categories to WordNet
nouns. They report a precision of 77%, without any comparison to YAGO.
Again, we conjecture that the difference is due to the method’s attempt to
map all Wikipedia categories, instead of just the leaf categories. Furthermore,
the paper provides a fully automated approach, while YAGO employs a small
number of manually defined mapping rules (to enhance the most-frequent sense
information provided by WordNet). The strategy in YAGO was to invest a
small amount of manual effort in order to achieve very high precision.

WordNet++ [37] binds Wikipedia pages about common nouns (such as soda
drink) to the corresponding WordNet concepts. YAGO ignores Wikipedia pages
about common nouns. In contrast, YAGO contains the full set of individual
entities from Wikipedia and their leaf categories. Thus, WordNet++ and YAGO
pursue complementary goals.

BabelNet [39] also maps Wikipedia articles to WordNet, but enhances them
with multilingual concepts. YAGO maps only Wikipedia categories to WordNet.
BabelNet does not contain facts about entities (other than lexical, taxonomic,
and unspecified unlabeled relations). UWN and MENTA [14, 40] have added a
multilingual dimension to entity and concept names, and also the class system.
All these recent projects have been carried out in parallel to the construction
of YAGO2 and are complementary to YAGO2 in their structure and contents.
For the multilingual dimension, we have integrated UWN into YAGO2.

Taxonomies from the Web. Cyc [1] has attempted to populate its semantic
classes by instances gathered from the Web [41]. However, that work reported
only very small coverage; the commercial products of CyCorp Inc. may have
higher coverage, but there are no details published. Freebase (freebase.com)
and Trueknowledge (trueknowledge.com) are more recent endeavors to build

39

large-scale knowledge bases, tapping into Wikipedia as well as other sources.
Both of them are also of commercial nature.

Newer work [42] has addressed the issue of taxonomy generation from the
Web on a larger scale. This work differs in its goal from YAGO, which aimed
very specifically at connecting Wikipedia instances to WordNet classes.

10.2. Ontologies

Ontologies have been either hand-crafted or constructed in an (semi-) auto-
mated manner; see [43] for an overview. Prominent examples of hand-crafted
knowledge resources are Cyc [1], WordNet [2], and SUMO [44], and also more re-
cent ontologies such as GeoWordNet [13]. While these hand-crafted approaches
have near-perfect precision, they cannot achieve the large-scale coverage of au-
tomatically constructed ontologies.

Most automated approaches have drawn from semistructured elements in
Wikipedia and other Web sources: infoboxes, category names, tables, lists, etc.
[45, 46, 47] and the references given there provide an overview of recent work
along these lines. Commercial endeavors include Freebase, Trueknowledge, and
Wolframalpha. None of these approaches has addressed the specific dimensions
of temporal and geospatial knowledge.

There is a variety of academic projects for constructing large knowledge
collections, using information extraction techniques on Web sources. These in-
clude KnowItAll and its successor TextRunner [4, 5], DBpedia [3], the Omnivore
system [48], work on distilling Web tables and lists into facts [49, 50, 51], the
ReadTheWeb project [52] the StatSnowball methods used for building Entity-
Cube [53] and its follow-up project Probase [54], WikiNet [36], our own work on
SOFIE [27] and Prospera [55], and others. None of these approaches has specif-
ically considered the temporal and geographical dimension. Moreover, most of
them produce outputs in non-canonical form, with surface names and textual
patterns rather than canonicalized entities and typed relations. DBpedia [3]
will be discussed in detail below.

The Kylin/KOG project [56] has developed learning-based methods for auto-
matically typing Wikipedia entities and generating infobox-style facts. However,
this project has not (yet) led to a publicly available knowledge base. Omega [6]
integrated WordNet with separate upper-level ontologies and populated various
classes with instance collections, including locations from geo gazetteers. Sweto
[67] is a tool suite for building knowledge bases in a semi-automatic manner.
Predating the advent of Wikipedia harvesting, the sizes of the Omega and Sweto
resources are much smaller than that of YAGO2.

10.3. DBpedia

Closest to YAGO in spirit is the DBpedia project [3, 11], which also extracts
an ontological knowledge base from Wikipedia. DBpedia and YAGO have dif-
ferent class systems. While YAGO re-uses WordNet and enriches it with the
leaf categories from Wikipedia, the DBpedia project has manually developed
its own taxonomy. YAGO’s compatibility with WordNet allows easy linkage

40

and integration with other resources such as Universal WordNet [14], which we
have exploited for YAGO2. DBpedia’s taxonomy has merely 272 classes, while
YAGO2 contains about 350,000.

For extracting relational facts from infoboxes, YAGO2 uses carefully hand-
crafted patterns, and reconciliates duplicate infobox attributes (such as birth-
date and dateofbirth), mapping them to the same canonical relation. DBpedia
outsourced the task of pattern definition to its community and uses a much
larger number of more diverse extraction patterns, but ends up with redundan-
cies and even inconsistencies. Overall, DBpedia contains about 1100 relations,
versus YAGO2 having about 100. The following key differences explain this big
quantitative gap, and put the comparison in the perspective of data quality.

e Many relations in DBpedia are very special. As an example, take air-
craftHelicopterAttack, which links a military unit to a means of trans-
portation. Half of DBpedia’s relations have less than 500 facts.

e YAGO2’s relations have more coarse-grained type signatures than DBpe-
dia’s. For example, DBpedia knows the relations Writer, Composer, and
Singer, while YAGO2 expresses all of them by hasCreated. On the other
hand, it is easy for YAGO2 to infer the exact relationship (Writer vs.
Composer) from the types of the entities (Book vs. Song). So the same
information is present.

e YAGO?2 represents years as incomplete dates, so that there is a single
unified way of expressing a birth date, no matter whether this date is given
as a calendar date or as the year only. DBpedia has different relations for
complete dates and for years. This yields a number of relations that are
semantic duplicates, but are not synchronized with each other. Not every
entity with a birth date also has a birth year.

e YAGO2 does not contain inverse relationships. A relationship between
two entities is stored only once, in one direction. DBpedia, in con-
trast, has several relations that are the inverses of other relations (e.g.,
hasChild / hasParent). This increases the number of relation names with-
out adding information.

e YAGO?2 has a sophisticated time and space model, which represents time
and space as facts about facts. DBpedia closely follows the infobox at-
tributes in Wikipedia. This leads to relations such as populationAsOf,
which contain the validity year for another fact. A similar observation
holds for geospatial facts, with relations such as distanceToCardiff.

Overall, DBpedia and YAGO share the same goal and use many similar
ideas. At the same time, both projects have also developed complementary
techniques and foci. Therefore, the two projects generally inspire, enrich, and
help each other. For example, while DBpedia uses YAGO’s taxonomy (for its
yago:type triples), YAGO relies on DBpedia as an entry point to the Web of
Linked Data [58].

41

10.4. Geographical and Temporal Knowledge

The first geographical gazetteers have been created centuries ago to collect
information associated with geographical locations. Today, the most compre-
hensive collection of this kind is GeoNames (geonames.org), providing geo-
coordinates for about 7 millions of entities and a geo-specific type system with
several hundred classes. GeoNames is curated by integrating a suite of struc-
tured data collections. By itself it is not connected to any other universal
knowledge base. To our knowledge, YAGO2 is the first collection that has fully
integrated all GeoNames entities along with proper mappings into the rich class
system of WordNet.

More recently, the idea of gazetteers has been expanded, e.g., by Feinberg
et al. [12], to encompass named periods, such as “The French Revolution” or
“Renaissance”, with their corresponding time periods. Such a temporal direc-
tory was created using Library of Congress subject headings by Petras et al.
[59]. YAGO2 takes this idea further, by combining the temporal and geograph-
ical data with semantic information. It knows not only the periods of named
events or lifetimes of persons, but also semantic relationships for connecting all
these entities.

10.5. Temporal Fact Eztraction

Several approaches have targeted the extraction of temporal facts from text
sources. The most prominent work along these lines is TARSQI [60]. TARSQI
captures not only explicit dates, but also phrases such as “a week ago” or “last
year”, mapping them into explicit dates. The NLP community has had event
extraction tasks in its TempEval workshop series [61], using representations such
as TimeML and reference corpora such as Timebank [62]. More recent work in
this area is from Strétgen and Gertz [63]. There is no attempt, though, to
connect these dates to a large knowledge base of entity-relationship facts.

Temporal knowledge as a first—class citizen in richly populated knowledge
bases has been addressed by only few prior papers: the TOB framework of [64],
our own preliminary attempt towards T-YAGO [65], and the TIE approach of
[66]. TOB [64] focused on extracting business-related temporal facts such as
terms of CEOs. It used a heavy NLP machinery, with deep parsing of every
sentence, and machine-learning methods for classifiers for specifically interest-
ing relations. It worked well, but was computationally expensive, required ex-
tensive training, and could not easily generalize to other relations. The work
on T-YAGO [65] focused on extracting relevant timepoints and intervals from
semistructured data in Wikipedia: dates in category names, lists, tables, in-
foboxes. It was rather preliminary and did not aim at the exhaustive anchoring
of an ontology in time and space. [67] focused on logics-based querying over un-
certain t-facts, but did not address the extraction and fact harvesting process.
Finally, the TIE approach [66] used training data with fine-grained annotations
to learn an inference model based on Markov Logic. However, it did not aim to
create a full knowledge base with time and space.

42

There is also recent awareness of temporal IR: ranking of search results for
keyword queries with temporal phrases [68, 69, 70]. This work is orthogonal to
ours.

10.6. Knowledge Representation for Time

The general theme of temporal knowledge is an old Al topic [71]. The
standard textbook by Russel and Norvig [72] refers to temporal facts as fluents:
instances of relations whose validity is a function of time.

There are different approaches to translate this notion of fluents into the
Semantic Web world. The earliest approach of the W3C has been to favor event
entities. For example, the birth of a person can be represented by an event
entity such as birth42; Entities that participate in this event — person, date,
location, etc. — are then linked by relations to this event entity. The drawback
of this approach is that one has to decide a priori which relations are represented
as binary relations with standard RDF triples, and which relations should be
cast into event entities with additional annotations.

A second approach to time representation is reification. Reification creates
a fact identifier for every fact. Then, it links the fact identifier to the subject,
predicate and object of the original fact, using additional RDF triples. This
leads to a substantial blow-up of storage space, and makes browsing and query-
ing inconvenient. In contrast, the specific form of reification in YAGO2 has fact
identifiers built in. Most facts are represented as standard triples, fact identi-
fiers are only used when really needed. Moreover, our SPOTL view on this data
makes exploring and querying easy.

A third approach for the representation of meta-information are named
graphs [73], which will soon become a W3C standard. A named graph is a
set of RDF statements. Named graphs allow focusing on specific knowledge
bases, making statements about certain knowledge bases, and annotating entire
knowledge bases by trust. To represent time and space annotations by named
graphs, every RDF statement would have to form its own named graph. This
seems like a huge overkill, and is not in the spirit of the original intention behind
named graphs.

A fourth approach [74, 75] extends RDF triples into quadruples, quads for
short. The fourth component primarily serves to represent the provenance of a
triple, but could also be used for other kinds of meta-facts like validity time of
fluents. The SPOTL model in YAGO2 is compatible with the quads approach,
and extends to more than 4 dimensions so as to simultaneously capture time,
space, provenance, and context.

Other RDF extensions for temporal and/or spatial knowledge include work
by [76, 77, 78, 79]. Gutierrez et al. [76] introduced a temporal semantics for
RDF, coined Temporal RDF, where time is modeled as a label on RDF triples,
giving each triple a validity time. Pugliese et al. [78] propose an a time index
supporting queries on this kind of enhanced RDF data. Koubarakis and Kyzi-
rakos [79] combine the semantics of spatial and temporal constraint databases
to create a time- and space-aware extension of RDF called stRDF, as well as

43

an equivalent extension to SPARQL. Perry et al. [77] proposed an ontological
model for a time- and space-aware ontology, together with a set of temporal
and spatial query operators. Our contribution, relative to these related works,
lies in a unified simple representation of temporal knowledge and systematically
propagating the available data to all relevant facts. For an overview on the field
of spatio-temporal databases, refer to [80].

11. Conclusions

11.1. Choice of Sources and Generalization Beyond

YAGO2 is built on Wikipedia, WordNet, and GeoNames. We chose these
sources because of four specific reasons.

1) Coverage and quality: Wikipedia comprises millions of entities of common
interest, WordNet aims to cover all words of the English language, and Geo-
Names is the largest free geo-gazetteer available. All three sources are manually
curated, with excellent accuracy of their contents.

2) Extraction accuracy: All three sources exhibit a high degree of structure, so
that we can extract data with near-human accuracy.

3) Contents licensing: All three sources have permissive licenses, so that we can
integrate their data into YAGO2 and make it publicly available.

4) Standard references: Wikipedia, WordNet and GeoNames are by far the
largest and most popular references of their kinds.

These characteristics make Wikipedia, WordNet and GeoNames unique. By
bringing these sources together, YAGO2 amplifies their usefulness.

While the YAGO2 extraction system is tailored to the specific sources, much
of the methodology is of more general purpose. Our extraction system combines
syntactic information (regular-expression patterns) with semantic information
(data types). This allows a limited but highly effective form of semantically
checking fact candidates at extraction time, which may be applicable indepen-
dently of the source. We have also devised specific techniques for dealing with
the space and time dimensions. Temporal and geospatial information can be
propagated from the base-facts to the meta-facts and back. This method works
universally regardless of where the base-facts originate. It makes YAGO2 the
first large-scale knowledge base that is consistently anchored in time and space.
The original YAGO paper [9] introduced the idea of type checking. In the cur-
rent paper, we have substantially extended this methodology to a framework of
Horn rules. Horn rules allow extracted facts to generate new facts. This tech-
nique demonstrates that a high extraction quality allows not just plausibility
checks, but also fact-generating rules. These can fruitfully interact with the
extraction process to further enhance the knowledge base.

11.2. Summary and Outlook

We have developed a methodology for enriching large knowledge bases of
entity-relationship-oriented facts along the dimensions of time and space, and

44

we have demonstrated the practical viability of this approach by the YAGO2 on-
tology comprising more than 120 million facts of near-human quality. We believe
that such spatio-temporal knowledge is a crucial asset for many applications in-
cluding entity linkage across independent sources (e.g., in the Linked-Data cloud
[11]) and semantic search. Along the latter lines, we think that the combined
availability of ontological facts and contextual keywords makes querying and
knowledge discovery much more convenient and effective.

Regardless of the impressive extent and great success of Wikipedia-centric
knowledge bases in the style of DBpedia, Freebase, WikiTaxonomy, YAGO, or
YAGO?2, there is a wealth of latent knowledge beyond Wikipedia in the form of
natural-language text. This includes biographies and homepages of people or
organizations, scientific publications, daily news, digests of contemporary events
and trends, and more. Tapping on these kinds of sources requires learning- and
reasoning-based forms of information extraction, as pursued, for example, by
our prior work on SOFIE [27]. In this context, too, considering the temporal
and spatial dimensions would be of utmost importance, but here the complexity
of natural language poses major obstacles. Early work along these lines include
[65, 66]. Much more refined and intensive efforts are needed, though. Our future
work aims at this open challenge of extracting, reconciling, and integrating
spatio-temporal knowledge from free-text sources.

12. Download

YAGO2 is publicly available on our project page http://www.
yago-knowledge.org. The content is licensed under a Creative Commons Li-
cense®. All data is available in multiple formats including RDF.

13. Acknowledgements

We are grateful for input from various people’s work: Edwin Lewis-Kelham
for implementing the YAGO2 user interface, Gerard de Melo for his help on
integrating his Universal WordNet, and Erdal Kuzey for his work on named
events and time facts in Wikipedia. We would also like to thank the people who
helped evaluate the quality of YAGO2 by manual assessment, most notably,
Ndapandula Nakashole, Stephan Seufert, Erdal Kuzey, and Anh Tuan Tran.

References

[1] D. B. Lenat, CYC: A Large-Scale Investment in Knowledge Infrastructure,
Commun. ACM 38 (1995) 32-38.

[2] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press, 1998.

Shttp://creativecommons.org

45

[3]

[13]

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. G. Ives,
DBpedia: A Nucleus for a Web of Open Data, in: The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian Semantic Web Confer-
ence, ISWC 2007 + ASWC 2007, Busan, Korea, pp. 722-735.

O. Etzioni, M. J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, A. Yates, Unsupervised Named-Entity Extraction
from the Web: An Experimental Study, Artif. Intell. 165 (2005) 91-134.

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open
Information Extraction from the Web, in: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad,
India, pp. 2670-2676.

A. Philpot, E. H. Hovy, P. Pantel, Ontology and the Lexicon, chapter: The
Omega Ontology, Cambridge University Press, 2008.

S. P. Ponzetto, R. Navigli, Large-Scale Taxonomy Mapping for Restructur-
ing and Integrating Wikipedia, in: Proceedings of the 21st International
Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena, Califor-
nia, USA, pp. 2083-2088.

S. P. Ponzetto, M. Strube, Taxonomy induction based on a collaboratively
built knowledge repository, Artificial Intelligence 175 (2011) 1737-1756.

F. M. Suchanek, G. Kasneci, G. Weikum, YAGO: A Core of Semantic
Knowledge, in: Proceedings of the 16th international conference on World
Wide Web, WWW 2007, Banff, Canada, pp. 697-706.

F. M. Suchanek, G. Kasneci, G. Weikum, YAGO: A Large Ontology from
Wikipedia and WordNet, J. Web Sem. 6 (2008) 203-217.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
S. Hellmann, DBpedia - A Crystallization Point for the Web of Data, Web
Semantics: Science, Services and Agents on the World Wide Web 7 (2009)
154 — 165.

M. Feinberg, R. Mostern, S. Stone, M. Buckland, Application of Geograph-
ical Gazetteer Sdards to Named Time Periods, Technical Report LG-02-
02-0035-02, Institute of Museum and Library Services National Leadership,
Berkeley, 2003.

F. Giunchiglia, V. Maltese, F. Farazi, B. Dutta, GeoWordNet: A Resource
for Geo-spatial Applications, in: The Semantic Web: Research and Appli-
cations, 7th Extended Semantic Web Conference, ESWC 2010, Heraklion,
Crete, Greece, pp. 121-136.

G. de Melo, G. Weikum, Towards a Universal Wordnet by Learning from
Combined Evidence, in: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China,
pp. 513-522.

46

[15]

[23]

[24]

[25]

[26]

S. Elbassuoni, M. Ramanath, R. Schenkel, G. Weikum, Searching RDF
Graphs with SPARQL and Keywords, IEEE Data Eng. Bull. 33 (2010)
16-24.

J. F. Allen, Maintaining Knowledge about Temporal Intervals, Commun.
ACM 26 (1983) 832-843.

J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
G. Weikum, YAGO2: Exploring and Querying World Knowledge in Space,
Context, and Many Languages (Demo Paper), in: Proceedings of the 20th
international conference companion on World Wide Web, WWW 2011,
Hyderabad, India, pp. 229-232.

T. Neumann, G. Weikum, The RDF-3X Engine for Scalable Management
of RDF Data, VLDB J. 19 (2010) 91-113.

J. M. Hellerstein, J. F. Naughton, A. Pfeffer, Generalized Search Trees for
Database Systems, in: Proceedings of 21th International Conference on
Very Large Data Bases, VLDB 1995, Zurich, Switzerland, pp. 562-573.

L. D. Brown, T. T. Cai, A. Dasgupta, Interval Estimation for a Binomial
Proportion, Statistical Science 16 (2001) 101-133.

J. L. Fleiss, Measuring nominal scale agreement among many raters, Psy-
chological Bulletin 76 (1971) 378-382.

K. L. Gwet, Computing inter-rater reliability and its variance in the pres-
ence of high agreement, British Journal of Mathematical and Statistical
Psychology 61 (2008) 29-48.

A. Frank, H.-U. Krieger, F. Xu, H. Uszkoreit, B. Crysmann, B. Jorg,
U. Schéafer, Question answering from structured knowledge sources, J.
Applied Logic 5 (2007) 20-48.

D. Santos, N. Cardoso, GikiP: evaluating geographical answers from wi-
kipedia, in: Proceeding of the 2nd international workshop on Geographic
information retrieval, GIR 2008, Napa Valley, California, USA, pp. 59-60.

D. Santos, N. Cardoso, P. Carvalho, I. Dornescu, S. Hartrumpf, J. Level-
ing, Y. Skalban, Gikip at geoclef 2008: Joining gir and qa forces for query-
ing wikipedia, in: Evaluating Systems for Multilingual and Multimodal
Information Access, volume 5706 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2009, pp. 894-905.

D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyan-
pur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, C. A.
Welty, Building Watson: An Overview of the DeepQA Project, Al Maga-
zine 31 (2010) 59-79.

47

[27]

28]

[36]

F. M. Suchanek, M. Sozio, G. Weikum, SOFIE: A Self-Organizing Frame-
work for Information Extraction, in: Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, Madrid, Spain, pp. 631-640.

R. Bunescu, M. Pasca, Using Encyclopedic Knowledge for Named Entity
Disambiguation, in: Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics, EACL 2006,
Trento, Italy, pp. 9-16.

S. Cucerzan, Large-scale named entity disambiguation based on Wikipedia
data, in: Proceedings of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2007, Prague, Czech Republic, pp. 708-716.

D. Milne, I. H. Witten, Learning to Link with Wikipedia, in: Proceedings
of the 17th ACM Conference on Information and Knowledge Mining, CIKM
2008, Napa Valley, California, USA, pp. 509-518.

S. Kulkarni, A. Singh, G. Ramakrishnan, S. Chakrabarti, Collective An-
notation of Wikipedia Entities in Web Text, in: Proceedings of the 15th
ACM SIGKDD international conference on knowledge discovery and data
mining, KDD 2009, Paris, France, pp. 457-466.

J. Hoffart, M. A. Yosef, I. Bordino, H. Fiirstenau, M. Pinkal, M. Spaniol,
B. Taneva, S. Thater, G. Weikum, Robust Disambiguation of Named En-
tities in Text, in: Conference on Empirical Methods in Natural Language
Processing, EMNLP 2011, Edinburgh, 2011, pp. 782-792.

B. Taneva, M. Kacimi, G. Weikum, Finding Images of Rare and Ambigu-
ous Entities, Technical Report MPI-I-2011-5-002, Max Planck Institute for
Informatics, 2011.

S. P. Ponzetto, M. Strube, Deriving a Large-Scale Taxonomy from Wikipe-
dia, in: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
AAAT 2007, Vancouver, British Columbia, Canada, 2007, pp. 1440-1445.

C. Zirn, V. Nastase, M. Strube, Distinguishing between instances and
classes in the wikipedia taxonomy, in: The Semantic Web: Research and
Applications, 5th European Semantic Web Conference, ESWC 2008, Tener-
ife, Canary Islands, Spain, pp. 376-387.

V. Nastase, M. Strube, B. Boerschinger, C. Zirn, A. Elghafari, WikiNet:
A Very Large Scale Multi-Lingual Concept Network, in: Proceedings of
the 7th International Conference on Language Resources and Evaluation,
LREC 2010, La Valetta, Malta.

S. P. Ponzetto, R. Navigli, Knowledge-rich Word Sense Disambiguation
rivaling supervised system, in: Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ACL 2010, Uppsala, Swe-
den, pp. 1522-1531.

48

[38]

(48]

A. Toral, O. Ferrandez, E. Agirre, R. Munioz, A study on linking wikipedia
categories to wordnet synsets using text similarity, in: Recent Advances in
Natural Language Processing, RANLP 2009, Borovets, Bulgaria, Associa-
tion for Computational Linguistics, 2009, pp. 449-454.

R. Navigli, S. P. Ponzetto, BabelNet: Building a very large multilingual
semantic network, in: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL 2010, Uppsala, Sweden,
pp. 216-225.

G. de Melo, G. Weikum, MENTA: Inducing Multilingual Taxonomies from
Wikipedia, in: Proceedings of the 19th ACM Conference on Information
and Knowledge Management, CIKM 2010, Toronto, Canada, pp. 1099—
1108.

P. Shah, D. Schneider, C. Matuszek, R. C. Kahlert, B. Aldag, D. Bax-
ter, J. Cabral, M. J. Witbrock, J. Curtis, Automated Population of Cyc:
Extracting Information about Named-entities from the Web, in: Proceed-
ings of the Nineteenth International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2006, Melbourne Beach, Florida, USA, pp.
153-158.

R. Navigli, P. Velardi, S. Faralli, A graph-based algorithm for inducing
lexical taxonomies from scratch, in: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Spain,
pp. 1872-1877.

S. Staab, R. Studer, Handbook on Ontologies, Springer, 2. edition, 2009.

I. Niles, A. Pease, Towards a standard upper ontology, in: Proceedings
of the 2nd International Conference on Formal Ontology in Information
Systems, FOIS 2001, Ogunquit, Maine, pp. 2-9.

First workshop on automated knowledge base construction, http://akbc.
xrce.xerox.com/, 2010.

A. Doan, L. Gravano, R. Ramakrishnan, S. Vaithyanathan (Eds.), SIG-
MOD Rec. Special Section on Managing Information Extraction, volume
37(4), 2008.

G. Weikum, M. Theobald, From Information to Knowledge: Harvesting
Entities and Relationships from Web Sources, in: Proceedings of the
twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems of data, Indianapolis, PODS 2010, Indiana, USA, pp.
65-76.

M. J. Cafarella, Extracting and Querying a Comprehensive Web Database,
in: 4th Biennial Conference on Innovative Data Systems Research, CIDR
2009, Asilomar, CA, USA.

49

[49]

M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, Y. Zhang, WebTables:
Exploring the Power of Tables on the Web, Proc. VLDB Endow. 1 (2008)
538-549.

G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and searching web
tables using entities, types and relationships, Proc. VLDB Endow. 3 (2010)
1338-1347.

P. Venetis, A. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao,
C. Wu, Recovering Semantics of Tables on the Web, in: Proc. VLDB
Endow. 4 (2011), pp. 528-538.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., T. M. Mitchell,
Toward an Architecture for Never-Ending Language Learning, in: Proceed-
ings of the 24th AAAI Conference on Artificial Intelligence, AAAT 2010,
Atlanta, Georgia, US, pp. 1306-1313.

J. Zhu, Z. Nie, X. Liu, B. Zhang, J.-R. Wen, StatSnowball: A Statistical
Approach to Extracting Entity Relationships, in: Proceedings of the 18th
international conference on World Wide Web, WWW 2001, Madrid, Spain,
pp- 101-110.

W. Wu, H. Li, H. Wang, K. Zhu, Towards a Probabilistic Taxonomy of
Many Concepts, Technical Report MSR-TR-2011-25, Microsoft Research
Beijing, 2011.

N. Nakashole, M. Theobald, G. Weikum, Scalable knowledge harvesting
with high precision and high recall, in: Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM 2011,
Hong Kong, China, pp. 227-236.

F. Wu, D. S. Weld, Automatically Refining the Wikipedia Infobox Ontol-
ogy, in: Proceeding of the 17th international conference on World Wide
Web, WWW 2008, Beijing, China, ACM, 2008, pp. 635-644.

B. Aleman-Meza, C. Halaschek, A. Sheth, I. B. Arpinar, G. Sannapareddy,
SWETO: Large-Scale Semantic Web Test-bed, in: In 16th International
Conference on Software Engineering and Knowledge Engineering, SEKE
2004: Workshop on Ontology in Action, Banff, Canada, pp. 21-24.

C. Bizer, T. Heath, K. Idehen, T. Berners-Lee, Linked data on the web
(LDOW2008), in: Proceedings of the 17th International Conference on
World Wide Web, WWW 2008, Beijing, China, pp. 1265-1266.

V. Petras, R. R. Larson, M. K. Buckland, Time Period Directories: A
Metadata Infrastructure for Placing Events in Temporal and Geographic
Context, in: ACM/IEEE Joint Conference on Digital Libraries, JCDL
2006, Chapel Hill, NC, USA, pp. 151-160.

50

[60]

[61]

[62]

[63]

M. Verhagen, I. Mani, R. Sauri, R. Knippen, S. B. Jang, J. Littman,
A. Rumshisky, J. Phillips, J. Pustejovsky, Automating Temporal Anno-
tation with TARSQI, in: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, ACL 2005, University of Michi-
gan, USA, pp. 81-84.

M. Verhagen, R. J. Gaizauskas, F. Schilder, M. Hepple, J. Moszkowicz,
J. Pustejovsky, The TempEval Challenge: Identifying Temporal Relations
in Text, Language Resources and Evaluation 43 (2009) 161-179.

B. Boguraev, J. Pustejovsky, R. Ando, M. Verhagen, TimeBank Evolution
as a Community Resource for TimeML Parsing, Language Resources and
Evaluation 41 (2007) 91-115.

J. Strotgen, M. Gertz, HeidelTime: High Quality Rule-Based Extraction
and Normalization of Temporal Expressions, in: Proceedings of the 5th In-
ternational Workshop on Semantic Evaluation, SemEval 2010, Los Angeles,
California, pp. 321-324.

Q. Zhang, F. M. Suchanek, L. Yue, G. Weikum, TOB: Timely Ontolo-
gies for Business Relations, in: 11th International Workshop on Web and
Databases 2008, WebDB 2008, Vancouver, Canada.

Y. Wang, M. Zhu, L. Qu, M. Spaniol, G. Weikum, Timely YAGO: Harvest-
ing, Querying, and Visualizing Temporal Knowledge from Wikipedia, in:
13th International Conference on Extending Database Technology, EDBT
2010, Lausanne, Switzerland, pp. 697-700.

X. Ling, D. S. Weld, Temporal Information Extraction, in: Proceedings of
the 24th AAAT Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, pp. 1385-1390.

Y. Wang, M. Yahya, M. Theobald, Time-aware Reasoning in Uncertain
Knowledge Bases, in: Proceedings of the Fourth International VLDB work-
shop on Management of Uncertain Data (MUD 2010) in conjunction with
VLDB 2010, Singapore, pp. 51-65.

O. Alonso, M. Gertz, R. Baeza-Yates, On the Value of Temporal Informa-
tion in Information Retrieval, SIGIR Forum 41 (2007) 35-41.

K. Berberich, S. J. Bedathur, O. Alonso, G. Weikum, A Language Modeling
Approach for Temporal Information Needs, in: Proceedings of the 32nd
European Conference on Information Retrieval, ECIR 2010, Milton Keynes,
UK, pp. 13-25.

M. Pasca, Towards Temporal Web Search, in: Proceedings of the 2008
ACM Symposium on Applied Computing, SAC 2008, Fortaleza, Ceara,
Brazil, pp. 1117-1121.

o1

[71]

[72]

[73]

[74]

M. Fisher, D. Gabbay, L. Vila, Handbook of Temporal Reasoning in Arti-
ficial Intelligence, Elsevier Science Inc., 2005.

S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pear-
son Education, 3rd edition, 2010.

J. J. Carroll, C. Bizer, P. J. Hayes, P. Stickler, Named graphs, provenance
and trust, in: Proceedings of the 14th international conference on World
Wide Web, WWW 2005, Chiba, Japan, pp. 613-622.

C. A. Welty, R. Fikes, A reusable ontology for fluents in owl, in: B. Bennett,
C. Fellbaum (Eds.), Formal Ontology in Information Systems, Proceedings
of the Fourth International Conference, FOIS 2006, Baltimore, Maryland,
USA, Frontiers in Artificial Intelligence and Applications, IOS Press, 2006,
pp. 226-236.

O. Udrea, D. R. Recupero, V. S. Subrahmanian, Annotated RDF, ACM
Trans. Comput. Log. 11 (2010).

C. Gutierrez, C. A. Hurtado, A. Vaisman, Introducing Time into RDF,
IEEE Transactions on Knowledge and Data Engineering 19 (2007) 207-
218.

M. Perry, A. P. Sheth, F. Hakimpour, P. Jain, Supporting Complex The-
matic, Spatial and Temporal Queries over Semantic Web Data, in: Pro-
ceedings of the 2nd international conference on GeoSpatial semantics, GeoS
2007, Mexico City, Mexico, pp. 228-246.

A. Pugliese, O. Udrea, V. S. Subrahmanian, Scaling RDF with Time,
in: Proceedings of the 17th International Conference on World Wide Web,
WWW 2008, Beijing, China, pp. 605-614.

M. Koubarakis, K. Kyzirakos, Modeling and Querying Metadata in
the Semantic Sensor Web: The Model stRDF and the Query Language
stSPARQL, in: The Semantic Web: Research and Applications, volume
6088, 2010, pp. 425-439.

N. Pelekis, B. Theodoulidis, I. Kopanakis, Y. Theodoridis, Literature Re-
view of Spatio-Temporal Database Models, Knowl. Eng. Rev. 19 (2004)
235-274.

92

Appendix A. Question Answering with YAGO2

All questions of the task-based evaluation, Section 9.1, and their answers
from YAGO?2 are listed here.

93

Appendiz A.1. GeoCLEF GiKiP Questions/Queries and Results

GP1: Name the waterfalls that have been employed in any of the sev-
eral adaptations of Fenimore Cooper’s book “The Last of the Mohi-
cans” to cinema.

7x isA waterfall matches (+last +mohicans)

Result: Nearly correct. Two waterfalls are found; according to the
last-mohicans-movie page there are more than five.

GP2: Find documents about people who have belonged to or are con-
sidered affiliated with the Vienna circle but who are not Austrian or
German

NA
Result: Could not be formulated, as there is no support for ‘not’.

GP3: Relevant documents describe rivers in Portugal that have cities
with a population higher than 150,000 people along their banks.

NA

Result: Could not be formulated, YAGO2 does not contain any rela-
tion to express ‘flows through’

GP4: Find which cantons are on the border of Switzerland with Ger-
many.

?x isa state matches (+canton +Germany) .
?x isLocatedIn Switzerland

Result: Nearly correct. Two cantons are correctly identified, some
are missing, some additional results are wrong (but these could easily
dismissed by other criteria).

GP5: Wars that took place in (ancient or modern) Greece are rele-
vant.

?x isa war .
?x happenedIn Greece

Result: Correct.

o4

GP6: Relevant documents are about mountains, ranges or peaks in
Australia whose altitude is greater than two thousand meters.

?X isa mountain .

?x locatedIn Australia .
?x hasHeight 7h .

?h isGreaterThan 2000

Result: Could be formulated, but did not return any results, as
YAGO2 does not contain any mountains in Australia.

GP7: Relevant documents describe capital cities in the African conti-
nent with a population greater or equal to 2,000,000 people.

?x isa capital locatedIn Africa .
?x hasPopulation ?p .
?p isGreaterThan 2,000,000

Result: Correct.

GP8: Find Brazilian suspension bridges.

?x isa suspension bridge matches (+Brazil)

Result: Nearly correct. Returns one correct and one incorrect result.
GP9: Which Renaissance composers have German origin?

?x isA composer during [1400,1700] .
?x wasBornIn 7b .
?b isLocatedIn Germany

Result: Could be formulated, but did not return any result, for lack
of facts. The earliest composer in YAGO2 born in Germany is from
1709.

GP10: Find islands in Polynesia whose population is higher than five
thousand inhabitants.

?x isA island nearby "Cook Islands",4000 .
?x hasPopulation ?p .
?p isGreaterThan 5000

Result: Correct (when taking Cook Islands as center).

99

GP11: Find the plays of William Shakespeare which occur wholly or
partially in Italy.

WilliamShakespeare created 7p matches (+Italy)

Result: Could be formulated, but did not return any result. None
of the original Shakespeare works seem to have an infobox (e.g. for
Hamlet, Othello, Romeo & Juliet), so YAGO2 does not have the
created facts.

GP12: Relevant results are cities or other places where Johann Wolf-
gang von Goethe lived or stayed for some time.

JohannWolfgangvonGoethe livesIn 7p

Result: Could be formulated, but did not return any result for

lack of facts. Wikipedia does not contain this information in semi-
structured form (infobox, category, list), so YAGO2 could not extract
any facts.

GP13: Relevant documents describe navigable Afghan rivers whose
length is greater than one thousand kilometers.

?x isA river locatedIn Afghanistan .
?x hasLength 71 .
7?1 isGreaterThan 1000km

Result: Correct.

GP14: Relevant documents describe the life and works of architects
from Brazil who have created works in Europe.

?x isA architect .
?x created 7a locatedIn Europe .
?x wasBornIn ?p locatedIn Brazil

Result: Could be formulated, but did not return any result for lack
of facts.

GP15: Find articles about bridges in France whose construction
started, continued or ended in or between 1980 and 1990.

?x isA bridge nearby Bourges,400km .
?x wasCreatedOnDate 7d during [1980,1990]

Result: Could be formulated, but did not return any results for lack
of facts. YAGO2 does not contain any bridges in France with geo-
coordinates.

96

Appendiz A.2. Jeopardy Questions/Queries and Results
Appendiz A.2.1. Name the Decade

Q: Disneyland opens & the peace symbol is created
A: 1950s

PeaceSymbol wasCreatedOnDate 7?x . Disneyland
wasCreatedOnDate 7y

Result: Correct.

Q: The Empire State Building opens & the ”War of the Worlds” radio
broadcast causes a panic
A: 1930s

EmpireStateBuilding wasCreatedOnDate 7x
Result: Correct.

Q: Klaus Barbie is sentenced to life in prison & DNA is first used to
convict a criminal
A: 1980s

NA

Result: Not expressible.

Q: The first flight takes place at Kitty Hawk & baseball’s first World
Series is played

A: 1900s

BaseballWorldSeries wasCreatedOnDate 7x

Result: Correct.

Q: The first modern crossword puzzle is published & Oreo cookies are
introduced
A: 1910s

Oreo wasCreatedOnDate 7x

Result: Could not be answered, as Oreo is not in YAGO2.

o7

Appendiz A.2.2. Died on the Same Day

Q: C.S. Lewis & Aldous Huxley’s deaths on Nov. 22, 1963 were over-
shadowed by this man’s death in Dallas
A: John Kennedy

C.S.Lewis diedOnDate ?d . ?p diedOnDate ?d . ?p diedIn Dallas
Result: Correct.

Q: Just hours before Michael Jackson’s death, Hollywood lost this TV
LLAngelﬂ
A: Farrah Fawcett

?p diedOnDate 7d matches (+angel) . MichaelJackson diedOnDate
7d

Result: Correct.

Q: On April 25,1995 first “Jeopardy!” host Art Fleming passed away
& the dance was over for this partner of Fred
A: Ginger Rogers

ArtFleming diedOnDate ?d . ?p diedOnDate 7d matches (+fred)
Result: Correct.

Q: This famed aviator outlived his brother by 35 years, passing away
in 1948 on the same day Gandhi was assassinated
A: Orville Wright

Gandhi diedOnDate 7d .
?p diedOnDate 7d .
?p type aviator

Result: Nearly correct; the YAGO2 result is WrightBrothers instead
of Orville Wright.

Q: Italian filmmaker Michelangelo Antonioni died in 2007 at age 94 on
the same day as this 89-year-old Swedish director
A: Ingmar Bergmann

MichelangeloAntonioni diedOnDate 7d .
?p diedOnDate 7d .
?p type director matches (+Swedish)

Result: Correct.

98

Appendiz A.2.3. The 19th Century

Q: In the 1840s he began reaping fame & fortune from the sale of his
reaping machines
A: Cyrus McCormick

?x isa person overlaps [1840,1850] matches (+reaper)

Result: Nearly correct. The query returns the correct result and sev-
eral incorrect ones.

Q: In June 1876 George Custer made his last stand at the Battle of
this river
A: Little Bighorn

?x isa battle overlaps 1876-06 matches (+George +Custer) .
?x happendIn 7r .
?r isa river

Result: Correct.

Q: It was the largest & most powerful state of the German Empire in
the 1800s
A: Prussia

NA
Result: Not expressible.

Q: Much of the fighting in this war, 1853 to 1856, took place on a
peninsula in the Black Sea
A: Crimean War

?x isa war during [1853,1856] .
?x happenedIn BlackSea

Result: Correct.

Q: In 1889 this South American country’s last emperor, Pedro II, was
forced to abdicate
A: Brazil

?x isa country matches (+Pedro +II) .
?x isLocatedIn SouthAmerica

Result: Nearly correct. YAGO2 does not know any connection be-
tween Pedro II and Brazil, but the query still gives Brazil as one re-
sult.

99

Appendiz A.2.4. Canadian Geography

Q: The name of this Ontario capital means “place of meeting” in the
Huron Indian language
A: Toronto

?x isa capital matches (+Huron) .
?x isLocatedIn Ontario

Result: Correct.

Q: Canada’s most densely populated province, it’s known to locals
just as “The Island”
A: Prince Edward Island

?x isa island .
?X isa province .
?x isLocatedIn Canada

Result: Correct.

Q: One of the two largest lakes solely within Canada; both are
“Great”
A: Great Bear Lake / Great Slave Lake

?x isa lake matches (+largest) .
?x isLocatedIn Canada .
Great’, means 7x

Result: Correct.

Q: North America’s second-longest river, it flows into the sea in the
Northwest Territories
A: The McKenzie

?xX isa river .
?x islocatedin NorthwestTerritories

Result: Nearly correct. Returns 19 rivers, including the correct
Mackenzie.

Q: Canada’s northernmost point lies on this large island a “mere” 6
degrees, 92 minutes from the North Pole
A: Ellesmere Island

?x islocatedin NorthernCanada . 7x isa island matches
(+northernmost)

Result: Correct.

60

Appendiz A.2.5. Urban

Q: This Australian city was founded in 1788 as a penal colony
A: Sydney

?x isa city locatedIn Australia .
?x wasCreatedOnDate 1788-##-##

Result: Correct.

Q: A downtown area of this major city is named for “the loop” formed
by its elevated train tracks
A: Chicago

?x isa city matches (+loop)

Result: Nearly correct. The query returns about 100 cities, including
the correct answer Chicago.

Q: In 930 A.D. Karmathian Muslim rebels stormed & destroyed this
holy city, carrying off the sacred black stone
A: Mecca

?x isa Holycities matches (+muslim)

Result: Nearly correct. The query returns many results, including
the correct one.

Q: By the end of 1999 the transfer of the Bundestag back to Berlin
from this city was largely complete
A: Bonn

?x isa city matches (+Bundestag)

Result: Nearly correct. The query returns 7 cities, one of which is
the correct answer Bonn.

Q: Site of a famous commando raid, it was the capital of Uganda until
1962
A: Entebbe

?x isA city locatedIn Uganda matches (+terrorist) .

Result: Nearly correct. The results include the correct answer.

61

Appendiz A.2.6. American Towns & Cities

Q: The National Earthquake Information Center is in this “colorful”
city just west of Denver
A: Golden, Colorado

?x isa city westOf Denver matches (+National +Earthquake
+Information +Center)

Result: Correct.

Q: This New Mexico city was founded in 1706 & named for a viceroy
of New Spain
A: Albuquerque

?x isA city .

?x isLocatedIn NewMexico .

?x wasCreatedOnDate 1706-##-##
Result: Correct.

Q: The growth of this state capital in Eagle Valley was stimulated by
the discovery of the Comstock Lode in 1859
A: Carson City

?x isA city matches (+Comstock +Lode)

Result: Nearly correct. The query returns 5 cities, including the cor-
rect answer.

Q: This raisin center of more than 400,000 people in California’s San
Joaquin Valley has grapes on its seal
A: Fresno

7?x isLocatedIn California matches (+raisin +center) .
?x hasPopulation 7n .
?n isGreaterThan 400000

Result: Correct.

62

Q: Montana State University has a branch in this city named for fron-
tiersman John
A: Bozeman

7k means ?x matches (+Montana +State +University) .
?x isLocatedIn Montana .

?s hasFamilyName 7k .

?s hasGivenName John

Result: Nearly correct. The query returns many results, which in-
clude the correct answer Bozeman.

63

