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Abstract—Deep Learning models provide state of the art clas-
sification results, but are not human-interpretable. We propose
a novel method to interpret the classification results of a black
box model a posteriori. We emulate the complex classifier by
surrogate decision trees. Each tree mimics the behavior of the
complex classifier by overestimating one of the classes. This yields
a global, interpretable approximation of the black box classifier.
Our method provides interpretations that are at the same time
general (applying to many data points), confident (generalizing
well to other data points), faithful to the original model (making
the same predictions), and simple (easy to understand). Our
experiments show that our method beats competing methods in
these desiderata, and our user study shows that users prefer this
type of interpretations over others.

I. INTRODUCTION

Recent years have seen the rise of powerful predictive
models. These include, e.g., Neural Networks (NN) or Random
Forests (RF). In some tasks, these models have proven to
have better performance than humans. The problem with these
models is that they are black box models, i.e., it is not
possible to understand the logic behind their decision-making
process. This means that we cannot assess whether the model
is performing well just because of a lucky guess or because the
model has learned the patterns and dependencies in the data.
For this reason, these models cannot be applied to critical tasks
in security, health, or justice, or more generally in any situation
where the user or citizen needs some level of understanding of
the algorithmic prediction. Indeed, the General Data Protection
Regulation [1] (GDPR) of the European Union and other
legislation are increasingly imposing some form of explanation
in algorithmic recommendations.

We are thus trapped in a dilemma where we have powerful
predictive models at our disposal, but cannot use them since
they are not interpretable. For this reason, the scientific com-
munity now studies Explainable Artificial Intelligence (xAI) –
the attempt to make predictive models interpretable. We focus
here on classification models, which take as input a data point,
and classify it into one out of several predefined classes. There
exist several techniques to make such models interpretable.
One popular family of approaches builds surrogate models –
simple and interpretable models that mimic the behavior of the
black box model. These can be, e.g., decision trees [2]–[5] or
local linear surrogates [6]. These models are more amenable
to human understanding.

There is considerable debate about what constitutes a
“good” surrogate model [7]–[13]. A common criterion is
fidelity, i.e., the percentage of the predictions on which the
surrogate model agrees with the black box model. A second
common metric is complexity: the interpretation provided by
the surrogate model has to be less complex than the black box
model. In the case of a decision tree, e.g., the complexity of
the interpretation is the depth of the tree [8]. In this paper, we
argue that a third important metric is generality: the number of
data points that the interpretation applies to. If an interpretation
applies to more data points, it appears less ad-hoc to a user.
The interpretation should also have a high confidence, i.e., all
data points concerned by the interpretation should be classified
in the same way.

It is intuitively clear that these desiderata are pitted against
each other: Higher fidelity means higher complexity. This
problem is known as the comprehensibility-complexity trade-
off. In the same spirit, higher generality means lower confi-
dence (akin to the precision-recall trade-off). Finally, higher
generality at low complexity also means lower fidelity.

In this paper, we propose a new methodology that addresses
this impasse: We propose to mimic a given black box classifier
not by a single surrogate model, but by several – one for
each class. In this way, each of the models can be simple
while their combination still has high fidelity. Our method
has not just a high fidelity and a low complexity, it also
provides very general interpretations at high confidence. Our
main contributions are as follows:

• We develop an abstraction of surrogate models, and
formalise quality metrics of surrogate models.

• We present our method STACI1, which learns surrogate
models that are at the same time simple, general, confi-
dent, and faithful to the original.

• We perform an extensive empirical evaluation on several
popular datasets from the UCI Machine Learning Repos-
itory, showing that STACI outperforms other state-of-the-
art methodologies in these desiderata.

• We perform a user study that shows that users prefer the
interpretations of our method over others.

The rest of the paper is organised as follows. Section II
discusses related work. Section III presents our new method,

1Surrogate Trees for A posteriori Confident Interpretations



STACI. Section IV evaluates our method on several datasets
and compares it to a baseline and the state of the art, before
Section V concludes.

II. RELATED WORK

Several approaches aim to produce human-interpretable
ML models. Some approaches propose readily interpretable
models, such as decision trees (CART [14]), rule-based mod-
els [15], Scalable Bayesian Rule Lists [16], or linear mod-
els [17].

Other approaches approximate a given black box model
post-hoc by an interpretable model. Among these, local post-
hoc models provide an interpretation for a given input data
point. LIME [6], e.g., provides local explanations by training
an interpretable linear model around individual data points.
The explanation is given in the form of a list of the most rele-
vant features with their weights. The weights are proportional
to the feature’s contribution to the outcome probability. LIME
also provides a sampling algorithm that combines multiple
explanations for individual data points to provide a global ex-
planation. The same authors proposed another approach [18],
called Anchors. Anchors are also local approximations of the
complex model that provide explanations in form of sufficient
if . . . then rules. These rules include only the features that
influence the outcome, i.e. changing the value of other features
will not have an impact on the outcome.

SHAP (SHapley Additive exPlanations) [19] proposes using
Shapley values from game theory as a unified measure of
feature importance, and shows that previous methods use an
approximation of this measure. [20] is the first work that ad-
dresses the quality of the explanations, providing counterfac-
tual explanations for each data point and measuring the fidelity
of each explanation. It uses the idea of b-counterfactuals,
which represent the minimal change in the feature in order to
gauge the prediction of the complex model. Then, a regression
model is fitted in the neighborhood of the data point to find
the best explanation.

Global approaches, in contrast, approximate the black box
model by a single global surrogate model. One of the first
global methods was TREPAN [4], which queries the complex
model in order to train a decision tree that mimics its behavior.
Dectext [3] refined this idea by using different types of splits in
the decision tree and a specific tree pruning strategy to improve
its fidelity. Another method based on decision trees [5] uses a
genetic programming algorithm to sample new data points,
which are then used to learn the behavior of the black
box model. The most recent global approach [2] proposes
DTExtract, a method that first fits a mixture of axis-aligned
Gaussians to estimate the input distribution over features of
the training dataset. Then the method builds binary decision
trees iteratively, using an active sampling strategy.

As mentioned before, the main challenge when building sur-
rogate models is the trade-off between fidelity and complexity.
There are different approaches to tackle this trade-off: limiting
the number of nodes in the surrogate tree [2], [4], applying
specific pruning algorithms [3], or stopping the growth of the

tree when a node covers the instances of only one class with
high probability [4].

In contrast to all of these works, our approach builds not a
single surrogate model, but one per class. This allows us to
achieve high fidelity and low complexity without corrupting
the resulting models through pruning. In our experiments, we
compare our approach to the state of the art global post-hoc
method, DTExtract [2]. We also compare to a model that is
interpretable by design (Scalable Bayesian Rule Lists [16]), to
LIME [6], and to CART [14] as a baseline.

III. OUR APPROACH

A. Interpretation Models

Post-hoc Interpretation. We are given a black box multi-
class classification model. We wish to make it interpretable
post-hoc, i.e., after the model has been trained. There is
considerable debate about the meanings of the terms “explain-
able” and “interpretable” [7]–[11]. In this paper, we aim at
interpretability in the following sense: We want to provide
a meaning for the results of a model in terms that are
understandable to humans [11].
Local vs. global interpretations. Local interpretations help
us understand the classification of one given input data point
(“Why does the model predict that this particular patient
should undergo chemotherapy?”). While these interpretations
can be very tailored, they are less well adapted for scenarios
where the model is used repeatedly: Local interpretations can
be unstable, and can provide very different interpretations even
in a very close neighborhood [21]. Individual interpretations
may also be contradictory to each other [22]. Global inter-
pretations, in turn, consider the model as a whole (“What are
the criteria that make patients more likely to be recommended
chemotherapy in general?”). Such interpretations can also help
understand an individual classification, but they are more
geared towards an understanding of the model as a whole.
In this paper, we study global interpretations.
Interpretation Models. Formally, we aim at global post-hoc
interpretations of the following form:

Definition III.1. Given a set S of labeled data points and a
labeled input point i ∈ S, an interpretation of point i is a set
of conditions that i satisfies, so that the majority of the data
points in S that satisfy these conditions carry the same label
as i.

An interpretation model is then a model that can provide such
interpretations. This definition applies to a wide variety of
models, be it decision trees, Bayesian rule lists, linear models,
or our own method. Let us now discuss some quality metrics
of such models.
Fidelity. All post-hoc approaches have the problem that the
interpretation model usually deviates from the black box
model, because it has to be simpler than the black box model.
If the model deviates for a given point, the approach cannot
deliver an interpretation for this point. We formalize this notion
by the concept of fidelity.



(a) Complex model (b) Interpretable model for left class (c) Interpretable model for right class

Fig. 1: In order to approximate the complex decision boundary of the black box model (Figure 1a), we train two specialised surrogate
models: One, shown in Figure 1b, overgeneralizes the “square” class. The other, shown in Figure 1c, overgeneralizes the “circle” class.

Definition III.2. Given an interpretation modelM, and given
a labeled dataset S, the fidelity is the ratio of points of S for
which the model M can provide interpretations.

Thus, the fidelity is just the ratio of points on which the
surrogate model agrees with the complex model. In the case
of a decision tree trained on S, the fidelity is just the weighted
average confidence of the leaf nodes.
Confidence. An interpretation will identify some characteris-
tics of the input point, and say that the majority of points with
these characteristics are classified in a certain way. Naturally,
such an interpretation is more convincing when that majority
is larger. To quantify this intuition, we define the notion of
confidence:

Definition III.3. Given an interpretation modelM, a labeled
dataset S, and a labeled input data point i ∈ S that the
model can interpret, the confidence at point i is the ratio
of data points of S that satisfy the interpretation of i and
share the label of i over the data points of S that satisfy the
interpretation of i.

This definition can be generalized to the average confidence
of the model M on the set S, which is simply the average
confidence for all points of S. In the case of a decision tree
trained on S , the average confidence is just the weighted
average confidence of the leaf nodes (and thus identical to
fidelity). In general, however, the fidelity gauges the per-
centage of data points where the model applies (no matter
their class). The confidence, in contrast, measures whether the
data points concerned by the interpretation are of the same
class. In this way, confidence corresponds to the precision
of the interpretation on the set of cases to which it applies.
Optimizing only confidence for a given class may reduce the
fidelity.
Generality. An interpretation will be more convincing if it
applies to more input data points. For example, imagine an
interpretation model in the medical domain that provides
interpretations based on the social security number of the
patient. This model will have a high fidelity and a high

confidence, because it just “explains” the illness of the patient
by her social security number. To avoid such interpretations,
we need the notion of generality:

Definition III.4. Given an interpretation modelM, a labeled
dataset S, and a labeled input data point i ∈ S that the model
can interpret, the generality at point i is the ratio of data points
in S that satisfy the interpretation of i and share the label of
i over all the data points of S that share the label of i.

The larger that percentage, the more satisfactory the interpre-
tation will be. We define generality as a measure relative to the
class size in order to be scale-invariant, and in order to guard
against skewed class distributions. Generality thus corresponds
to the recall of the interpretation on the set of all data points
with the same label.
Complexity. The goal of an interpretation model is to provide
interpretations that are as simple as possible. Intuitively, the
complexity of an interpretation corresponds to the number of
conditions it contains: Simpler interpretations have fewer con-
ditions. Formally, the complexity of an interpretation depends
on the type of the interpretation model. For decision trees, the
complexity of an interpretation is usually the length of the path
from the root to the leaf node [8]. The worst case complexity
of a tree is the maximal depth.

B. Our Approach

Goal. Our approach receives as input a black box classification
model. It produces as output a surrogate model, which makes
(by and large) the same predictions as the black box model, but
is simpler and thus easier to understand. When this surrogate
model is presented with a new data point of a class C, it
will produce an interpretation such as: “This data point has
the characteristics X,Y, Z and was classified as C. There are
500 other data points with these characteristics, and 80% of
them are also classified as C.”
Approach. The key idea of our method is to generate not a
single surrogate model, but one specialized surrogate model
for each class. Each specialized model is trained to over-
generalize its class. Figure 1 exemplifies this for a binary



classification model: the model (a) is the black box model.
The model (b) overgeneralizes the “square” class, while the
model (c) overgeneralizes the “circle” class. We then interpret
an incoming data point in two steps:

1) We first classify the data point by the black box model.
This may appear to be cheating, but the goal is not to
replicate the black box model in its absence. Rather, the
goal is to interpret a prediction of the black box model.
Thus, this prediction is necessarily available. In Figure 1,
if we receive the point marked by a star, we classify it
as “square”.

2) We then use the specialized surrogate model for that
class to provide an interpretation. In the example, we use
the model of Figure 1 (b). The result is an interpretation
such as: This data point has the characteristics of Model
(b), and was classified as “square”; there are 30 other
data points with these characteristics, and 80% of them
are also classified as “square”.

Fulfilment of the Desiderata. For the specialized models,
we use decision trees with limited depth. This entails that
our interpretations have a low complexity. Since we have one
specialized tree per class, their combination is still sufficiently
complex to approximate the black box model. We thus achieve
a high fidelity. Finally, our trees are constructed in such a way
that they maximize both the percentage of correctly classified
points (the confidence) and the percentage of points of the
target class (the generality).

In general, training more trees leads to higher confidence,
less complexity per tree, and higher fidelity. Thus, one could
think that one should simply train many more trees. However,
more trees lead to a decrease in generality. If we train
only one tree per class, in contrast, this does not lead to a
decrease in generality. This is because generality is computed
per class. Furthermore, one tree per class satisfies our goal
of providing global interpretations: A single tree provides a
human-understandable interpretation of a single, entire class.

Let us now detail the construction of our trees.

C. Training algorithm

We are given a black box N -class classification model, and a
set S of data points. We want to construct a surrogate model
that can interpret these points. As is customary, we use the
black box model to label the data points S. On this labeled
dataset, we train one decision tree per class in a one-vs-all
fashion.

Our goal is to train our class-specific trees in such a way that
they maximize confidence and generality. For this purpose, we
do not use standard metrics such as the Gini Impurity Index
or the Information Gain when deciding a split on a node in
the decision tree. Rather, we employ the F1 score.

The F1 score is a measure of the model’s accuracy on the
dataset and is defined as a harmonic mean of precision and
recall:

F1 = 2× Precision×Recall

Precision+Recall
(1)

Precision and recall are defined for a binary classification
scenario. Precision is the ratio of true positives (TP ), i.e. of
positive data points that model has classified as such, over all
data points that the model has classified as positive. Recall is
the ratio of true positives, i.e., the ratio of positive data points
that model has classified as such, over all positive data points
in the dataset:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where FP and FN represent false positives and false nega-
tives, respectively.

If we recall the definitions of confidence (Def. III.3) and
generality (Def. III.4), we can see that they directly correspond
to the definitions of precision and recall, respectively, in our
scenario of one tree per class. It is worth mentioning that
optimizing only one of these two metrics would lead to
pathological solutions. Optimizing only precision would result
in splits that are highly confident but that would not cover
a lot of data points (i.e., the generality would be low). In
the extreme case, the split would single out only one data
point, resulting in a confidence of 100%. On the other hand,
optimizing only for recall, the split would tend to encapsulate
as many points of one class as possible, including many
points of the other classes, thus significantly degrading the
confidence. The F1 score is the harmonic mean of precision
and recall, and is thus a natural metric to optimize both
desiderata together. It complies with our approach in multiple
aspects:

• It is an asymmetric metric (false positives and false
negatives count differently), and thus it fits our strategy
of training one surrogate model per class in a one-vs-all
manner.

• It is a widely used metric for the evaluation of classifiers,
and optimizing it will thus, by definition, not harm
fidelity.

• It optimizes both confidence and generality.
• It does not require any user-defined parameters.

In fact, our training algorithm has just one user defined input:
the desired complexity of the interpretation, i.e. the maximal
depth of the surrogate decision trees. Our method trains one
decision tree per class on the labeled S, using the F1 score
to decide node splits, and limiting the depth of the trees as
specified by the user. The tree growth stops when the gain in
the split metric is less or equal to zero or when the maximal
depth has been reached. The output of our algorithm is set of
decision trees, one for each class.

Let us now discuss how we can provide an interpretation
for a given input data point. Algorithm 1 receives as input
the black box model M , a data point x, and the surrogate
trees {Tc}Nc=1 for each of the N classes. We first use M
to classify x. Then we check if the corresponding surrogate
tree Tc agrees with M . If so, we produce an interpretation:
The characteristics of the data point can be read off the path



TABLE I: Datasets

Dataset Features Num. Cat. Classes Instances

Heart 13 6 7 2 303
Breast 31 31 0 2 569
Diabetes 8 8 0 2 768
Voting 16 0 16 2 435
Sick 29 7 22 2 2800
Hypothyroid 25 7 18 2 3163
Adult2 11 5 6 2 30162
Wine 13 13 0 3 179
Dermatology 34 33 1 6 358
Vehicle 14 18 0 4 846

from the root of Tc to the leaf for x. The generality and the
confidence can be found directly at the leaf node. If Tc does
not agree with M on x, we are in an area that fell victim to
the constraint of limited complexity, and we cannot provide
an interpretation. (If many data points fall in this area, fidelity
suffers.)

Algorithm 1 Interpret with STACI

Input: black box Model: M
Data point x
Surrogate trees {Tc}Nc=1

1: c = M(x)
2: if Tc(x) = c then
3: return “This data point has the characteristics

Tc.pathFor(x), and is classified as c. There are
Tc.numSamples(x)−1 other data points with these charac-
teristics, and Tc.leafConf(x)% of them are also classified
as c.”

4: end if
5: return “STACI cannot provide an interpretation.”

IV. EXPERIMENTS

We evaluate our approach on the datasets of the UCI
Machine Learning repository. We compare the performance of
our approach with the state of the art method DTExtract [2],
the interpretable-by-design method SBRL [16], LIME [6], and
CART [14] as a baseline. We have also conducted an user
study to validate the desiderata defined in Section III-A and
to determine the users’ preferences.

A. Settings

Datasets. All the datasets used in our experiments are pub-
licly available at the UCI Machine Learning Repository [23].
Table I shows their key characteristics.
Metrics. We report the four metrics from Section III-A: The
complexity is the average depth of the path for the decision
trees, the number of rules for SBRL, and number of features
in the explanation for LIME. The confidence is the average

2We used a subset of Adult dataset, removing less relevant features (race
and native-country)

confidence on the decision path of the decision tree, or the
confidence of the firing rule in case of SBRL, or the confidence
of the set of conditions in case of LIME. The fidelity is the
percentage of data points where the model agrees with the
black box model. The generality is the percentage of the data
points of one class that is covered by an interpretation.
Black box Models. For every dataset, we train two different
black box models, a Neural Network and a Random Forest.
We use the implementations of the scikit-learn Python pack-
age [24]. We train the Multi Layer Perceptron classifier with
500 nodes in the hidden layer and the Random Forest classifier
with 1000 trees. We use 10% of the data as test set.
Systems. For DTExtract3 and SBRL4, we use the code pub-
lished by the authors. For CART, we train the decision tree
with limited depth, as we do for our method. We train SBRL
using the default parameters and setting the length of the rule
list to 10. Since this method supports only categorical features,
we discretize the numerical features. Also, SBRL doesn’t
support the multi-class scenario, and we thus cannot pro-
vide results for the Wine, Dermatology and Vehicle datasets.
For LIME5, we use its global version, where Submodular
pick algorithm is used to provide multiple explanations that
represent the black box model as a whole. We fix the number
of features to the maximal number of conditions. We allow
an arbitrary number of explanations for each dataset, except
for Adult, Sick and Hypothyroid datasets, where we limit the
number to 1000. To validate our method, we also evaluate
the fidelity of a modified STACI method, called STACI’. This
method does not have access to the black box model at testing
time. For each prediction, it computes the average confidence
along the decision path of each surrogate tree. The confidence
of a node in the tree is computed as the ratio of correctly
classified data points by the split on that node over the total
number of data points on that node. Finally, the method uses
the tree with the highest average confidence to make the
prediction. Thus, STACI’ is a kind of disadvantaged variant
of STACI, which has to make do without access to the black
box model at testing time.

We train our models on 90% of the dataset, run all experi-
ments on 20 random train/test splits, and report the averaged
results. The code for our approach, as well as all experimental
data, is available at https://github.com/nedRad88/STACI.
Fidelity. The results of the fidelity comparison are shown
in Table II for the NN model, and in Table III for the RF
model. We can see that our method, STACI, outperforms
all competitors in most of the cases. This is not surprising,
because STACI has one tree per class to ensure fidelity. Even
our disadvantaged method STACI’ outperforms competitors in
several cases, while in others it has comparable performance.
This means that our training algorithm successfully ensured a
high fidelity of the specialized surrogate trees.
Complexity. Table IV shows the average complexity of the
surrogate models. CART and LIME always have the same

3https://github.com/obastani/dtextract
4https://github.com/Hongyuy/sbrl-python-wrapper
5https://github.com/marcotcr/lime

https://github.com/nedRad88/STACI


TABLE II: Fidelity (%) with NN as black box model

Dataset DTE SBRL LIME CART STACI’ STACI

Heart 87.34 85.88 84.84 80.97 79.68 84.84
Breast 94.93 91.57 87.28 89.65 91.05 93.16
Diabetes 80.58 83.38 71.49 75.19 76.23 84.55
Voting 95.91 94.55 95.34 95.34 94.55 95.00
Sick 97.88 97.25 75.36 96.66 97.79 98.46
Hypo. 96.39 97.88 94.32 98.99 98.45 99.31
Adult 92.35 93.88 87.56 73.53 98.23 99.58
Wine 91.11 N/A 52.78 66.67 86.67 97.78
Derma. 94.86 N/A 82.70 80.28 95.28 96.11
Vehicle 74.47 N/A 54.71 69.06 68.24 86.35

TABLE III: Fidelity (%) with RF as black box model

Dataset DTE SBRL LIME CART STACI’ STACI

Heart 87.10 88.06 91.13 86.94 83.87 92.90
Breast 96.32 92.21 89.82 96.49 92.63 97.89
Diabetes 87.86 87.01 71.56 85.00 81.82 94.16
Voting 97.96 96.59 98.07 97.05 98.86 98.86
Sick 99.43 94.61 73.93 99.20 97.86 98.46
Hypo. 98.97 95.93 93.85 99.45 99.31 99.96
Adult 83.89 87.56 80.36 89.69 85.73 96.74
Wine 91.67 N/A 62.78 93.89 91.11 96.67
Derma. 96.75 N/A 76.98 90.00 93.06 96.39
Vehicle 74.35 N/A 58.33 72.94 70.82 86.11

complexity – simply because we set the maximal depth of the
trees (in CART) and the maximal number of conditions (in
LIME) to the same value as maximal depth of the tree for
our approach. We show that interpretations provided by our
approach are usually shorter than the ones of DTExtract and
SBRL.

At the same time, the complexity of STACI remains always
limited, even in the worst case. That is not the case for our
competitors: Table V shows the maximal complexity of an
interpretation. In the worst case, DTExtract and SBRL will
deliver interpretations of more than 10 conditions. STACI,
in contrast, always delivers simple interpretations, as the
maximum tree depth is fixed. The method can still keep a
high fidelity because it uses multiple surrogate trees.
Confidence. Tables VI and VII show the average confidence of
the interpretations for the two different black box models. As
we can see, STACI gives interpretations with higher confidence
in most of the cases.
Generality. We compare the generality of our model and
DTExtract in Table VIII. STACI has higher generality in most
of the cases. Even though there is a clear trade-off between
confidence and generality (or precision and recall), the results
show that our specific training strategy and choice of F1
measure successfully solves this challenge.

In summary, our method outperforms the other methods in
terms of all four aforementioned criteria: fidelity, complexity,
confidence and generality. Thus, STACI overcomes the trade-
off between confidence and generality, achieves higher fidelity,
and still never delivers long interpretations. Figure 2 shows an
example interpretation given by our system.

TABLE IV: Average Complexity

Dataset Black DTE SBRL LIME CART STACI

Heart NN 3.15 3.90 3 3 2.89
RF 3.11 2.29 4 4 3.28

Breast NN 2.88 4.20 3 3 1.9
RF 3.18 6.16 4 4 2.88

Diabetes NN 2.89 5.78 3 3 1.49
RF 2.75 7.21 4 4 1.85

Voting NN 3.11 1.57 3 3 1.58
RF 3.00 1.63 3 3 1.69

Sick NN 2.40 3.64 3 3 1.40
RF 2.25 3.77 3 3 2.07

Hypo. NN 2.58 4.50 3 3 1.20
RF 2.16 4.78 3 3 1.09

Adult NN 3.25 8.49 4 4 1.87
RF 2.75 7.22 4 4 1.83

Wine NN 3.95 N/A 3 3 2.42
RF 4.29 N/A 4 4 2.93

Derma. NN 4.91 N/A 3 3 2.24
RF 4.85 N/A 4 4 2.36

Vehicle NN 3.99 N/A 3 3 2.68
RF 4.50 N/A 4 4 2.91

TABLE V: Maximal Complexity

Dataset Black DTE SBRL LIME CART STACI

Heart NN 9.30 7.00 3 3 3
RF 10.80 5.4 4 4 4

Breast NN 10.30 6.55 3 3 3
RF 9.4 11.00 4 4 3

Diabetes NN 9.50 10.40 3 3 3
RF 10.2 11.90 4 4 4

Voting NN 10.85 3.80 3 3 3
RF 11.30 4.10 3 3 3

Sick NN 10.50 5.60 3 3 3
RF 10.60 7.60 3 3 3

Hypo. NN 9.7 6.40 3 3 3
RF 10.00 6.10 3 3 3

Adult NN 10.6 12.20 4 4 4
RF 10.8 18.85 4 4 4

Wine NN 7.8 N/A 3 3 3
RF 6.7 N/A 4 4 4

Derma. NN 8 N/A 3 3 3
RF 8.5 N/A 4 4 4

Vehicle NN 6.4 N/A 3 3 3
RF 6.4 N/A 3 3 3

TABLE VI: Confidence (%) of the interpretations (NN)

Dataset DTE SBRL LIME STACI

Heart 85.04 87.83 78.80 88.57
Breast 94.18 93.47 88.95 95.57
Diabetes 81.71 84.50 60.11 83.47
Voting 95.17 95.56 94.84 95.91
Sick 97.17 96.55 77.96 97.83
Hypo. 97.38 97.63 86.92 98.98
Adult 92.46 93.85 75.34 98.20
Wine 88.58 N/A 90.36 92.23
Derma. 78.63 N/A 53.12 89.21
Vehicle 66.02 N/A 40.41 74.98



TABLE VII: Confidence (%) of the interpretations (RF)

Dataset DTE SBRL LIME STACI

Heart 82.28 81.75 85.74 80.38
Breast 93.49 91.86 95.33 95.52
Diabetes 76.23 77.33 68.00 80.22
Voting 96.50 95.30 94.98 95.89
Sick 97.61 93.90 74.55 97.79
Hypo. 98.08 95.81 95.82 99.07
Adult 80.12 82.21 82.09 87.53
Wine 88.84 N/A 59.82 93.48
Derma. 78.83 N/A 64.48 90.00
Vehicle 59.45 N/A 52.99 61.38

TABLE VIII: Generality comparison and counterfactuality

Dataset Black DTE STACI Counterfactuality

Heart NN 59.21 76.63 66.81
RF 58.83 68.35 64.63

Breast NN 80.31 92.59 75.20
RF 84.82 88.67 7.88

Diabetes NN 66.92 74.47 72.33
RF 64.23 71.51 90.99

Voting NN 73.37 95.01 64.39
RF 82.14 95.15 69.89

Sick NN 94.70 94.18 17.14
RF 93.39 94.65 30.44

Hypo. NN 89.62 97.08 10.99
RF 96.79 96.94 15.32

Adult NN 92.06 95.53 52.35
RF 92.25 73.84 42.12

Wine NN 77.03 86.67 69.38
RF 79.51 85.12 22.27

Derma. NN 91.74 91.33 12.99
RF 91.54 91.54 9.11

Vehicle NN 53.98 68.70 48.21
RF 46.16 55.54 27.39

B. Counterfactuality

In this section we discuss another property of interpreta-
tions: counterfactuality. An interpretation for a data point is
counterfactual if the following is true: If we modify the data
point in such a way that the conditions of the interpretation

The datapoint
Pregnancies 5
Glucose 166
Blood pressure 72
Skin thickness 19
Insulin 175
BMI 25.8
Diabetes pedigree 0.59
Age 51

is classified as diabetic. It has these characteristics:
Glucose>154, Insulin>145, Age>30

There are 37 other data points with these characteristics,
and 94.59% of them are also classified as diabetic.

Fig. 2: Example of a STACI interpretation

no longer hold, then the black box model classifies the data
point differently. Counterfactuality is a very attractive property,
and counterfactual interpretations have been considered tanta-
mount to explanations [13], [25]. That said, counterfactuality
alone is not sufficient: A counterfactual interpretation could
just pose a condition that is so extreme that it is guaranteed
to catapult the data point out of its current class – as in
“You suffer from senility because you are not a baby. If you
were a baby, you would not be senile.” Such explanations
are obviously absurd. Therefore, counterfactuality is always
accompanied by the requirement to find the smallest modifica-
tion that changes the class of the data point [25] – as in “You
suffer from senility because you are older than 100 years.”
Counterfactuality in this sense is not possible in the global
setting, because it inherently depends on the individual data
point. Therefore, there are no guarantees that our approach
will provide such explanations. However, we can assess coun-
terfactuality a posteriori. We report the counterfactuality as the
percentage of data points for which the prediction of the black
box model changes when we modify the data point so that it no
longer satisfies the conditions of the interpretation. The results
are shown in Table VIII. As we can see, our approach is able
to achieve a respectable ratio of counterfactuality, despite not
being designed for it.

C. User study

To evaluate which characteristics of the interpretations are
subjectively most valuable, we conducted a user study. We
used the Diabetes dataset, and trained a Random Forest
with 1000 trees as black box model. Then, we trained three
interpretable models: DTExtract, LIME and STACI. The length
of the interpretation was set to 3 for both LIME and STACI. For
LIME we show only the features that had positive influence
(weight) on the outcome. Each participant of the user study
was invited to look at a single patient. We showed the data
of this patient and the model prediction, and we proposed
the interpretations provided by the three approaches. In this
study, we are not interested in the visual representation of
the interpretations, and so we showed all three interpretations
in textual form. Each interpretation consists of the set of
conditions identified by the model. Since STACI also provides
the confidence and generality, we computed the same measures
for the other two systems as well, and provided them to the
participant. For LIME, we also show the importance of each
feature. We asked the participants to evaluate how satisfac-
tory each interpretations was, using a scale from 1 (least
satisfactory) to 5 (most satisfactory). We also asked them
to identify which characteristics of the interpretations were
important for their choice: the length of the interpretations,
the feature importance, the confidence, or the generality. 55
people participated, and most of them have a background in
computer science.

Table IX shows the average characteristics of the interpre-
tations provided by each system, and the average rating by
the users. Our method achieves the highest confidence, and
ranks second in generality after DTExtract. This is because



TABLE IX: User study

System Confidence(%) Generality(%) Length Average Rating

DTExtract 76.61 74.68 1.16 3.12
LIME 59.18 0.41 1.86 1.93
STACI 85.23 42.42 2.52 3.91

Fig. 3: User preferences
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DTExtract classified many instances on the root node. This
entails shorter interpretations, and more generality, but comes
at the cost of confidence. LIME achieves very low generality,
which is because it provides local interpretations, which are
not designed to regroup many data points.

Overall, STACI achieves the highest user rating. The reason
for this good performance of STACI is shown in Figure 3: The
users rated confidence and generality as the two most valuable
properties of interpretations. These are exactly the metrics that
we introduced in this work, and that STACI optimizes. This
preference for more general interpretations also explains why
LIME, with its local explanations, performs poorly: the partic-
ipants did not like interpretations that appear tailored to a few
data points. The reason why STACI outperforms DTExtract in
the user rating is that users value confidence above everything
else. Hence, DTExtract’s strategy of providing short, general,
but low-confidence interpretations falls behind STACI’s more
balanced approach of optimizing generality and confidence at
the same time.

Overall, our study emphasizes the importance of generality
and confidence, and shows that the interpretations by our
method were considered the most satisfactory.

V. CONCLUSIONS

In this paper, we have presented STACI, a method for
providing interpretations of black box classification models.
Our method uses one surrogate decision tree per class, each
trained using the F1 score as a metric to decide a split.
The resulting models provide simple, confident, but general
interpretations.

We have shown that our new method outperforms state
of the art methods in terms of fidelity, maximal complexity,
and confidence. Our user study confirms that the metrics we

proposed, confidence and generality, are important features of
an interpretation, and that users prefer our interpretations over
others.
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