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ABSTRACT
Knowledge Bases (KBs) find applications in many knowledge-
intensive tasks and, most notably, in information retrieval. Wikidata
is one of the largest public general-purpose KBs. Yet, its collabo-
rative nature has led to a convoluted schema and taxonomy. The
YAGO 4 KB cleaned up the taxonomy by incorporating the ontol-
ogy of Schema.org, resulting in a cleaner structure amenable to
automated reasoning. However, it also cut away large parts of the
Wikidata taxonomy, which is essential for information retrieval. In
this paper, we extend YAGO 4 with a large part of the Wikidata
taxonomy – while respecting logical constraints and the distinc-
tion between classes and instances. This yields YAGO 4.5, a new,
logically consistent version of YAGO that adds a rich layer of infor-
mative classes. An intrinsic and an extrinsic evaluation show the
value of the new resource.
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1 INTRODUCTION
A Knowledge Base (KB), also called Knowledge Graph, is a di-
rected labeled multi-graph, where the nodes are entities (such as
the United States of America, Eleanor Roosevelt, or the UN Dec-
laration of Human Rights), and the edges are relations between
these entities (such as which person is a citizen of which country,
or which person contributed to which artifact) [73]. Similar entities
are grouped into classes (such as the class of countries, the class of
people, or the class of artifacts), and these classes form a taxonomy,
where more general classes (such as living beings) subsume more
special classes (such as humans). KBs find applications in question
answering, natural language processing [76], and knowledge in-
jection into language models [37, 54]. They are used in particular
also in information retrieval, e.g., to enhance the understanding
of queries and documents [64], to expand queries [17, 58], to sum-
marize documents [5], to facilitate semantic search [15, 20], or for
entity retrieval [14, 30, 62]. Major industry players such as Google,
Apple, Microsoft, and Meta all build and use KBs [52]. There are
also numerous public KBs, including both domain-specific ones and
general-purpose ones.
Wikidata. One of the largest general-purpose KBs nowadays is
Wikidata [75]. It provides a wealth of facts about nearly every do-
main of common human discourse, with more than 100 million
entities and around 1.4 billion facts about them. Each entity has
an abstract identifier (such as Q83396), which makes the identifiers
language-independent and persistent in time. Tens of thousands
of people contribute to the project. At the same time, being a col-
laborative KB, Wikidata suffers from a lack of agreement on the
schema level: there are several classes that are difficult to distin-
guish for the uninitiated user (e.g., geographical location (Q2221906),
location (Q115095765), geographic region (Q82794), physical location
(Q17334923), and geographical area (Q3622002)); there are more
than ten thousand relations; constraints are defined but not en-
forced (Grotesco (Q10509019) is a subclass of Q49094906, which is
not a class); classes and instances are mixed (scientist (Q901), e.g.,
is both a subclass of person (Q215627) and an instance of profession
(Q28640)); there are more than 2.7M classes of which only 3% are
instantiated (1M subclasses of chemical entity (Q43460564) have no
instance); and the taxonomy contains cycles (there are 47 pairs of

https://orcid.org/0000-0001-7189-2796
https://orcid.org/0000-0002-7867-6612
https://orcid.org/0000-0003-0468-0384
https://orcid.org/0009-0002-4530-7594
https://orcid.org/0000-0002-9665-1187
https://orcid.org/0009-0009-6730-7406
https://doi.org/10.1145/3626772.3657876
https://doi.org/10.1145/3626772.3657876


SIGIR ’24, July 14–18, 2024, Washington, DC, USA Fabian M. Suchanek et al.

classes that are subclasses of each other, e.g., method (Q1799072)
and technique (Q2695280), and 15 cycles of length 3 or more, e.g.,
axiom (Q17736), first principle (Q536351), principle (Q211364)). Fi-
nally, the abstract identifiers for Wikidata properties and entities
make downstream applications more difficult.
YAGO 4. The YAGO KB has been in existence since 2008 [9, 27,
39, 72]. Its fourth version [74] was designed to address the short-
comings of Wikidata: It combines the data about instances from
Wikidata with the taxonomy and properties from Schema.org –
an ontology developed by a W3C Community Group1. Filtering
and constraint enforcement made YAGO 4 a KB that allows for
automated reasoning. However, this merger came at the expense of
abandoning nearly the entire class taxonomy of Wikidata. That is
a disadvantage because classes can express facts that are very hard
to model correctly by RDF properties [57] – like saying that some-
thing is a “train ferry route”, a “financial regulatory agency”, or a
“de facto consulate”. As a consequence, one of the major criticisms
that users advanced was that the class hierarchy of YAGO 4 was
too sparse.
Contributions. In this paper, we show how this shortcoming of
YAGO 4 can be resolved, while still maintaining the logical con-
sistency and semantic coherence of YAGO. We carefully incorpo-
rate selected parts of the Wikidata taxonomy into the taxonomy
of Schema.org. This leads to considerable challenges. Numerous
organically grown branches of the Wikidata taxonomy have to
be disentangled. Furthermore, many classes in Wikidata are both
instances and classes and pose a challenge for modeling. The trans-
formation also poses engineering challenges: Wikidata comprises
more than 120 GB, even compressed, which must be parsed and
processed. We will describe how we surmounted these challenges,
and what open problems still remain. The resulting resource, which
we call YAGO 4.5, contains 132M facts and is logically consistent.

Our paper is structured as follows: Section 2 recalls related work,
Section 3 discusses design decisions, Section 4 discusses imple-
mentation issues, and Section 5 presents the resulting KB, before
Section 6 concludes.

2 RELATEDWORK
General-Purpose Knowledge Bases. The Semantic Web com-
prises hundreds of KBs2. Many of these are tailored for specific
domains or applications, such as the Gene Ontology [3] for bio-
logical processes, functions, and cellular components. However, in
this paper, we are concerned with general-purpose KBs that do not
focus on a specific domain. In the following, we describe several
prominent general-purpose KBs. ConceptNet [71] is a semantic
network that primarily deals with common sense knowledge. This
makes it an orthogonal project to YAGO concerned with facts about
instances concerning nearly all human knowledge.BabelNet [50] is
a large multilingual encyclopedic dictionary derived fromWordNet,
Wikipedia, Wikidata, and several other sources. BabelNet focuses
on relations between concepts and words and has neither a tax-
onomy nor a schema. DBpedia [4] is a large-scale, multilingual
KB derived from Wikipedia (and, more recently, Wikidata). Unlike

1https://www.w3.org/community/schemaorg/
2http://cas.lod-cloud.net/

YAGO, it lacks information about the temporal validity of the facts.
Moreover, the automated generation from the Wikipedia infoboxes
and the priority for recall over precision has led DBpedia to be not
fully consistent [1, 21, 67]. The manually curated part of DBpedia
contains just 4M instances3. Freebase [10] was an extensive KB
consisting of metadata compiled from various sources. The project
was discontinued in 2015, and its content was transferred [59] to
Wikidata.Wikidata [75], a project of theWikimedia Foundation, is
a collaboratively edited KB that supports other Wikimedia projects
like Wikipedia and Wikimedia Commons. It is by far the largest
open KB. However, due to its collaborative nature, its taxonomy
has grown convoluted and complicated, with inconsistencies in
hierarchies and data models as well as rule violations – making it
hard to use even by contributors [11, 60, 68].

In this landscape, YAGO positions itself as a large general KB for
facts about instances, with a taxonomy, manually defined proper-
ties, and logical constraints. Its key property is that it is a centrally
controlled data source, which allows it to establish certain guaran-
tees for the quality of its data [9, 27, 39, 72, 74]. The latest version,
YAGO 4 [74], was designed to be clean enough to perform auto-
mated reasoning on it. However, its taxonomy is very parsimonious,
which is the challenge that we address in the present paper.
Upper Ontologies. Top ontologies, also known as upper or foun-
dational ontologies, provide a domain-independent framework for
organizing knowledge across various fields. We discuss some of the
most prominent projects below and refer the reader to Mascardi
et al. [42] for a comprehensive comparison. Cyc [34] is one of the
oldest and most comprehensive upper ontologies, developed by Cy-
corp, aiming to represent general human knowledge and common
sense reasoning. SUMO [46] is an open-source upper ontology with
a formal structure for organizing and integrating domain-specific
ontologies. It consists of a core set of general concepts and rela-
tions and domain-specific extensions that cover various fields, such
as biology, finance, and geography. DOLCE [43] is another top
ontology which focuses on capturing the ontological categories
underlying natural language and human cognition. BFO [2] is an
upper ontology that was created based on the ontologies related to
the domain of geospatial information. WordNet [48] contains lexi-
cal and semantic relationships between sets of synonymous words
(synsets). WordNet does not define properties, and the project was
discontinued in 2012.

Schema.org [25] differs from the above in that it is a collabora-
tive project initiated by major companies like Google, Microsoft,
and Yahoo to provide a shared vocabulary for annotating Web
content with structured data. While not a top ontology in the tradi-
tional sense, Schema.org plays a crucial role in the Semantic Web
ecosystem by promoting standardized vocabularies for describing
entities and their properties, thus facilitating data interoperability
and integration. It is broadly adopted (with more than 12 million
websites in 2016) and benefits from strong industry support, making
it a highly reliable and sustainable choice for building a KB [47].
Taxonomy Induction and Expansion. Many recent studies
automate taxonomy induction and expansion, including Online
Catalog Taxonomy EnrichmenT (OCTET) [41], TaxoCom [33],
TaxoOrder[70], TaxoExpan [65], HiExpan [66], TaxoEnrich [31],
3https://www.dbpedia.org/resources/ontology/
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and taxonomy induction from a set of terms [40]. Our own pre-
vious YAGO versions automatically mapped WordNet synsets
to Wikipedia categories [72]. In contrast to these automated ap-
proaches, YAGO 4 and the new YAGO 4.5 use a manual mapping.
This is because there are only a few dozen classes to be mapped.
Wikidata Efforts. There is a community effort to map Wikidata
properties and classes to Schema.org4. These mappings use exact
match (P2888) (64 mappings), equivalent class (P1709) (332 map-
pings), equivalent property (P1628) (84 mappings), external subprop-
erty (P2236) (22 mappings), and external superproperty (P2235) (6
mappings). However, the effort was discontinued in 2017. These
mappings inspired the mappings of YAGO 4, which in turn were
the basis for the mappings that we use in this paper.

Beyond that, the Wikidata community has conducted a survey
on ontology issues that its contributors face5. It lists in particular
a “Messy upper-level ontology”, a “Mix-up of meta levels”, “Ex-
changed sub-/superclasses”, “Redundant classification”, “Cycles” (in
the taxonomy), and “Unclassified items”. However, as a community
effort, Wikidata has to count on the collaboration of its contributors
to solve these issues. This is a lengthy and incremental process that
depends on individual commitment and consensus. The discussion
dryly notes, for example, that the “messy upper-level ontology” is
“not fully solvable without some dictator to decide and enforce it”.
This dictator, of course, cannot and should not exist in a community-
driven effort such as Wikidata. In YAGO, in contrast, decisions can
be taken and enforced effectively, as the team of contributors is
much smaller. Indeed, YAGO has always had the strategy of in-
gesting instance data from large resources in a bottom-up fashion,
but enforcing a top-level taxonomy, relations, and constraints in a
top-down fashion. This is also the strategy that we use in this paper
to extract a clean subset of the Wikidata taxonomy for YAGO.

3 DESIGNING YAGO
3.1 Design Rationale
Our goal is to have a clean upper taxonomy for YAGO, which is
precise and non-redundant to allow for automated reasoning. Our
choice falls on Schema.org, for reasons we have elaborated in Sec-
tion 2: the taxonomy is concise, maintained by a W3C consortium,
and finds applications well beyond its original purpose of anno-
tating Web pages. It has the right level of detail for our purposes
and does not digress into philosophical concepts. It defines not just
classes, but also relations.

One could argue that the upper-level taxonomy is sufficient and
that one should not aim to add more fine-grained classes – least of
all the Wikidata taxonomy: it contains overly specific classes with
few instances, some of its classes are not useful for large KB appli-
cations (such as multi-organism process (Q22269697) for elections),
and sibling classes could be further grouped into common super-
classes (e.g., Wikidata is missing a class that regroups human-made
places, making do instead with human-made geographic feature
(Q811430), human-made geographic feature (Q811463), and human-
made geographic object (Q35145743)). All of this, one could argue,
makes it an ill-suited candidate for a taxonomy.

4https://github.com/okfn-brasil/schemaOrg-Wikidata-Map
5https://www.wikidata.org/wiki/Wikidata_talk:Ontology_issues_prioritization#
Overview_of_potential_solutions

However, these issues fade when a clean upper-level taxonomy
is put on top: less useful lower-level classes (such as Q22269697)
disappear because they are not subclasses of the clean upper-level
classes. The missing grouping, likewise, can be achieved by the
upper-level taxonomy – for example for places. Finally, even if a
Wikidata class contains few instances, it can still carry meaningful
information. For example, it is informative for the human user to
know that an entity is a “General aviation monoplane with 1 tractor-
piston-propeller engine” (Q33110974). It was precisely that lack of
such classes that users deplored for YAGO 4. Such classes do not
carry logically formalized meanings. (It would be cumbersome to
formally express that something is a “General aviation monoplane
with 1 tractor-piston-propeller engine” by RDF statements [56, 57].)
Rather, the purpose of these lower-level classes is to convey infor-
mal information to the human user. The Wikidata classes clearly
serve this purpose.

3.2 Design Principles
Our goal is to integrate the upper taxonomy from Schema.org with
the lower taxonomy fromWikidata. The following design principles
drive our integration:
1. Prefer properties over class membership. Some information
can be expressed either by a property (hasNationality UnitedStates)
or by a class membership (type American). When designing the
schema, we give preference to properties and choose classes only
if the class appears in the domain or range of a property. In our
example, American does not appear as a range or domain of any
property (its superclass Human does). Hence, the class American
should not exist, and the nationality should be expressed by a
property. The reason for avoiding classes when possible is that OWL
DL (the reasoning formalism we target) does not allow expressing
properties about classes (i.e., we cannot attach properties to the
class American, while we can for the instance UnitedStates). This
choice is also consistent with the way Wikidata and YAGO model
properties.
2. Choose the property with fewer objects. When we have the
choice between a property and its inverse property (e.g., hasCitizen-
ship and hasCitizen), we choose the one that has, on average, fewer
objects per subject (i.e., hasCitizenship). The reason for this choice
is that it allows seeing the properties as attributes “about” the sub-
ject. For example, the Wikipedia page of Eleanor Roosevelt lists her
US-American nationality, because the nationality is perceived as a
property “of a person”. At the same time, the Wikipedia page about
the United States does not list all people of American nationality,
because a citizen is not perceived as a property “of a country”. Our
criterion formalizes this intuition. It is indeed de facto used by all
major KBs [23].
3. The upper taxonomy exists to define formal properties
that will be populated. All classes of the upper taxonomy shall
define formal properties (e.g., an Airline has an iataCode, which
justifies its existence as an upper-level class). Both the domain and
the range of these properties have to be upper-level classes. The
reason for this design choice is that it makes the upper taxonomy a
self-contained schema. Schema reasoning can then be restricted to
this upper-level taxonomy without the need to search for property
definitions in the lower classes.

https://github.com/okfn-brasil/schemaOrg-Wikidata-Map
https://www.wikidata.org/wiki/Wikidata_talk:Ontology_issues_prioritization#Overview_of_potential_solutions
https://www.wikidata.org/wiki/Wikidata_talk:Ontology_issues_prioritization#Overview_of_potential_solutions
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4. The lower taxonomy exists to convey human-intelligible
information about its instances in a non-redundant form.
While the upper-level taxonomy contains the schema, the lower-
level taxonomy targets mainly human users. Our design principle
thus tells us to remove classes that add no information over up-
per taxonomy classes, to eliminate links in the taxonomy that are
redundant due to transitivity, to merge classes that are hard to
distinguish for the uninitiated user, and to remove classes that are
not populated.

3.3 Upper Taxonomy
We now discuss how we construct the upper-level taxonomy of
YAGO 4.5.
Upper-level classes. As for YAGO 4 [74], we start with the taxon-
omy of Schema.org. It defines one top-level class schema:Thing with
11 subclasses. We exclude the class Action6, which models mainly
Web user actions. We exclude BioChemEntity and MedicalEntity be-
cause these are domain-specific concepts. This leaves us with 8 top-
level classes (CreativeWork, Event, Organization, Taxon, Person, Place,
Product, Intangible), which we accept as subclasses of Thing. All
top-level classes are declared disjoint (except places/organizations,
and products/creative works).
Fictional entities. To deal with fictional entities, we add a class
yago:FictionalEntity as a subclass of schema:Thing. This class de-
fines properties such as yago:createdBy and yago:appearsIn, thus
justifying its existence as a class under Design Principle 1. Fic-
tional entities are not disjoint with any other class, as anything
can also exist in fiction. A fictional entity is an instance of both
yago:FictionalEntity and the class it belongs to in fiction. For exam-
ple, a fictional human is an instance of both yago:FictionalEntity
and schema:Person. This has the disadvantage that fictional humans
will be counted as humans in count queries. However, it has the
advantage that one can easily reason on fictional humans, as they
will share all the properties that we declared for schema:Person.
Wikidata goes a different way, by recreating the entire class hierar-
chy with its properties also for fictional beings, mapping each class
of fictional entities to its real-world class counterpart. This choice
can for sure be defended, but for YAGO, it would have severely
convoluted the schema: it would have required duplication of all
class and property specifications. The current modelization already
has an advantage over the modelization in previous versions of
YAGO (which simply merged real and fictional entities), as well as
over other top-level ontologies such as DOLCE, BFO, and SUMO
(which do not model fictional entities at all).
Intangibles. For our new YAGO, we added the following classes
that are not in Schema.org, but that are necessary to define the
ranges of properties (under Design Principle 3 above): yago:Award,
yago:Gender (which differs from schema:GenderType in that it allows
more than two values), and yago:BeliefSystem (for religious adher-
ence). All are subclasses of schema:Intangible. The other subclasses
of Intangible that Schema.org defines are mostly Web-specific (e.g.,
ActionAccessSpecification). Since these classes would not have in-
stances, let alone populated properties from Wikidata, we removed
them under Design Principle 3.

6For ease of reading, we omit prefixes where these can be inferred.

Schema.org has a subclass Occupation of Intangible, and models
occupations by the property hasOccupation. However, if we model
occupations by a property, (1) we lose the class hierarchy of oc-
cupations (Physicist subClassOf Scientist etc.), and (2) we lose the
ability to add properties to specific professions (such as the doc-
toral advisor for scientists). Hence, by Design Principle 1 above, we
model professions rather as subclasses of Person.
Places.When it comes to places, the taxonomy of Schema.org is
heavily oriented towards the annotation of Web pages, with sub-
classes such as Accommodation, Residence, LocalBusiness, etc. These
classes do not define properties that we could populate from Wiki-
data, and therefore, we remove them under Design Principle 3. We
then manually created a taxonomy of subclasses of schema:Place,
which distinguishes schema:Landform (areas with a boundary given
by nature), schema:AdministrativeArea (boundary given by hu-
man administration) and the newly created yago:HumanMadePlace
(boundaries given by human physical construction) and yago:As-
tronomicalObject (with boundaries in space). For the former, we
add a subclass yago:Way, which regroups all ways of transit (roads,
canals, railway lines, etc.).
General considerations. Under Design Principle 3, we keep only
those classes from Schema.org that add new properties (plus their
super-classes, all the way up to schema:Thing). This results in 41
upper classes. As in YAGO 4, all of the above is expressed as SHACL
constraints7 on the classes of Schema.org. Thus, there is no special
syntax, code, or formalism for these declarations, and they are all
part of the YAGO KB as normal facts.

3.4 Lower Taxonomy
Mapping toWikidata. The lower levels of the YAGO 4.5 taxonomy
come from Wikidata. As in YAGO 4, each class in the YAGO upper
taxonomy is manually mapped to one or more classes in Wikidata.
This happens, likewise, in a fully declarative way with a simple RDF
statement that links the Schema.org-class by a special predicate
to the Wikidata class(es). The mapping can happen at any level
of the upper taxonomy: general classes such as Organization are
mapped to Wikidata, and more special classes such as Corporation
are mapped as well. A mapping can give rise to the following
constellations:
One-to-one mapping. One upper class is mapped to one Wiki-

data class. All of the subclasses of the Wikidata class are glued
under the upper class, but its super-classes are not imported.

One-to-many mapping. One upper class is mapped to several
Wikidata classes. Again, all subclasses of these are glued under
the upper class. This has the effect of merging the Wikidata
classes. We do this, e.g., for classes that are equivalent for our
purposes (such as geographical region (Q82794) and geographical
area (Q3622002)).

One-to-none mapping. One upper class is mapped to no Wiki-
data class – only its subclasses are mapped to Wikidata. This
has the effect that there cannot be direct instances of the upper
class. Nor can there be subclasses other than the ones we de-
clared. This is a new mechanism that did not exist in YAGO 4.
We use it for classes with a convoluted taxonomy in Wikidata.

7https://www.w3.org/TR/shacl/
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We use a one-to-none-mapping for the following classes:
schema:Thing. In YAGO 4, this class was mapped to the top-level

class entity (Q35120) in Wikidata, which resulted in more than
1 million direct instances of schema:Thing in Yago. This defies
Design Principle 3, because schema:Thing defines only very
few properties. Hence, we now accept only entities that fall
into one of the manually approved subclasses of Thing. This
results in a clean top-level taxonomy, discarding meta-classes
(e.g., class or metaclass of Wikidata ontology (Q21522864)), over-
lapping classes (e.g., geographic entity (Q27096213) and location
(Q115095765)) and too specific classes (there are 6 top classes
in Wikidata with less than 40 instances each, e.g., converter
(Q35825432)).

schema:Place. The taxonomy of Wikidata for places is highly
convoluted, with classes that are difficult to distinguish such
as terrain (Q14524493), geographical location (Q2221906), geo-
graphical region (Q82794), geographical area (Q3622002), and
location (Q115095765). Hence, we do not map schema:Place, and
accept only instances of its manually designed subclasses. This
discards 2,861 classes (from 29,826, i.e., less than 1%) and 137k
instances (from 19M, i.e., less than 1%).

schema:Intangible. Intangible classes in Wikidata, likewise, are
highly convoluted, with classes such as class (Q5127848), process
(Q3249551 and Q67518233) or role (Q4897819). Hence, here, too,
we would have difficulties establishing properties to comply
with Design Principle 3. Therefore, we apply a one-to-none
mapping and accept only instances and subclasses of the man-
ually declared subclasses of Intangible.

Importing the subclasses. Once the mapping has been defined
manually, the subclasses of Wikidata can be imported automatically.
To this end, we consider the subclass graph of Wikidata, which
we construct as follows: every entity of Wikidata that has a sub-
ClassOf relationship becomes a node in this graph. It is linked to
its superclasses by the subClassOf relationship. We then iterate
through all upper classes of YAGO, and whenever we hit a class
that is mapped to Wikidata, we glue the entire sub-DAG of that
Wikidata class under the YAGO top-level class. This approach dif-
fers from the approach in YAGO 4, where we mapped only classes
with a Wikipedia article. However, this limited the taxonomy to
just a handful of classes per instance, which proved to be too few.

Several caveats are to be respected in this merging process to
respect Design Principle 4: as in YAGO 4, we ensure that we do
not add any link that would create a loop in the taxonomy (57
loops were removed). We do not add transitive links (40k such links
were removed). We do not add a link if that would make a class a
transitive subclass of two top-level classes that we declared disjoint
(9k links were removed). We also remove, from the sub-DAG that
we import, all Wikidata classes that have their own mapping to
YAGO upper classes.
Excluded classes.We exclude housekeeping classes of Wikidata
that we blacklist manually: classes of Wikimedia pages, disambigua-
tion pages, lists, and the like. For our new YAGO, we also exclude
linguistic objects (such as characters (Q3241972), phrases (Q187931),
numbers (Q11563), etc.), many of which are technically infinite and
would otherwise make up 700k entities in YAGO. We also remove
abstract objects such as actions and occurrents, as these have rather

philosophical subclasses that are of limited use for our purposes
(e.g., Multi-organism process (Q22269697), etc.). The same fate is
bestowed on scholarly articles. The addition of all obtainable schol-
arly articles to Wikidata was controversial8, and in YAGO, they
would make up 39M of entities, almost half of all entities. Hence,
we decided to remove them. Finally, under Design Principle 4, we
also remove all classes that do not have instances (1.3M).

3.5 Instances
Identifiers.As in YAGO 4, every instance is automatically equipped
with a readable name. We use the title of the corresponding
Wikipedia page as an entity identifier (as in yago:Eleanor_Roosevelt).
If there is none, or if the same Wikipedia page is used by more than
one entity, we use the English label of the entity and concatenate it
with the Wikidata Q-id to avoid ambiguity (as in yago:Brazilian_-
jiu_jitsu_competition_Q105086361). If there is none, we use a label
that contains legal Turtle characters, concatenated with the Wiki-
data id (which was not done in YAGO 4). If there is no such label,
we use the Wikidata id (with a YAGO-prefix for uniformity). The
Turtle standard9 allows percentage codes in local names, but many
parsers (e.g., the one of Hermit10) cannot deal with them. Hence,
we replace all characters that are not letters or numbers by their
hexadecimal Unicode, so that two identifiers that differ only in their
inadmissible characters are still distinct.
Instances vs. Classes. Wikidata contains several items that are
both instances and classes. For example, English (Q1860) is an in-
stance of Natural Language (Q33742), as well as a subclass of Anglic
(Q1346342). That makes sense because there can be several sub-
classes of English, such as e.g., American English (Q7976). As per
our discussion in Section 3.4, English thus becomes a class. At the
same time, we would also like to say that Eleanor Roosevelt spoke
English, i.e., we would like to make a statement about a class. The
dominant reasoning language, OWL 2, allows such statements by
a mechanism called punning11. However, OWL 2 punning works
essentially by allowing the same identifier (English) to denote two
distinct elements (a class and an instance). This means that nei-
ther standard description logic reasoners nor the query language
SPARQL can deal with expressions where a variable is bound to
an identifier that is simultaneously a class and an instance [35].
Thus, it would be impossible to say that Eleanor Roosevelt spoke a
subclass of Anglic. (This problem did not appear in YAGO 4, where
intermediate classes were eliminated aggressively, and survived
only as instances.) We solve this problem as follows: whenever we
encounter a Wikidata fact that would link an instance to a class,
we create a generic instance of the class and use it as an object.
In our example, we create a fact saying that Eleanor Roosevelt
spoke yago:English_language_generic_instance. The intuition is that
Roosevelt spoke something that is an instance of English. This
mechanism is in line with Approach 2 in [53], and kicks in for
awards, belief systems, academic titles, and languages.

This technique works well for the objects of statements, which
generally have an existential interpretation (Eleanor Roosevelt did

8https://www.mail-archive.com/wikidata@lists.wikimedia.org/msg06716.html
9https://www.w3.org/TR/turtle/
10http://www.hermit-reasoner.com/
11https://www.w3.org/TR/owl2-new-features/#F12:_Punning
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not speak all dialects of English, but there is one that she spoke). It
works less well for subjects of statements. For example, commer-
cial products are classes in Wikidata (and rightly so, as different
people can own different instances of the same product). However,
if we take commercial products as classes, we cannot attach their
manufacturer, date of inception, awards, etc. to them. It would be
semantically wrong to attach these to a generic instance of the
product, as they apply to the line of products itself. It would also be
semantically wrong to create an axiom that says that all instances
of the class have that property (not every single iPhone has won an
award). Hence, we make every item that is a product (as identified
by the manufacturer (P176) relation in Wikidata) an instance.

3.6 Properties and Constraints
Properties and constraints work largely as in YAGO 4: for
schema:Thing and each sub-class from Schema.org, we manually
define the properties that Schema.org provides. By Design Princi-
ple 3, we keep only those properties of Schema.org that are (1) of
general interest (removing specialized properties such as hasDrive-
ThroughService) and (2) existent in Wikidata (because otherwise
they would not be populated). For the new YAGO, we added a few
properties, most notably for the new top-level classes yago:Award
and yago:FictionalEntity, and also for countries (Schema.org does
not contain the relation hasCapital). Each of the 100 most frequent
relations in Wikidata is either mapped to YAGO or excluded on pur-
pose (e.g., because of redundancy). Our design document12 lists the
most frequent Wikipedia properties, together with their mappings
to YAGO 4.5.

An instance can have only those properties that are declared for
its class or superclasses. We manually add SHACL constraints [32]
for maximum cardinality (31 constraints in total), patterns of liter-
als (e.g., for ISBNs; 9 in total), and domain and range constraints
(for each relation). Each relation is mapped manually and declara-
tively to a relation in Wikidata, and populated from there. A fact
is accepted only if both its subject and its object conform to the
domain and range constraints (this removes roughly 6% of facts in
our dataset). We take only the facts that Wikidata labels as “truthy”
(which exclude disputed statements). We extract time stamps for
facts from Wikidata, and attach them to the YAGO facts in the
RDF-star model [26].

The entire taxonomy of upper classes, the definition of proper-
ties, the accompanying SHACL constraints, and the mapping to
Wikidata classes take the form of a single Turtle file. It forms an
integral part of YAGO and can be downloaded along with the rest
of the KB. All of this works exactly as in YAGO 4, and we refer the
interested reader to the corresponding publication [74].

Unlike YAGO 4, the new YAGO simplifies numerical quantities:
while these were previously values with a range and a unit, they
are now simple literals. Our design document12 lists, explains and
justifies the design decisions for each class and relation in detail.

4 IMPLEMENTING YAGO
Parsing, analyzing, and transforming a KB of the size of Wikidata
(766 GB as of April 2023) is no easy feat. We describe here the
challenges we encountered when creating YAGO 4.5, and how we
12https://yago-knowledge.org/data/yago4.5/design-document.pdf

surmounted them, in the hope that this will be useful for other
users of Wikidata and YAGO.
Infrastructure. The code of YAGO 4 was written in Rust. While
this ensured high performance and compile-time flagging of code
problems, it also complicated the maintenance of the project , and
we have, therefore, rewritten the code from scratch in Python.
The original YAGO 4 loaded the data into a RocksDB key-value
store. This had the advantage that many costly operations (such as
constraint checks) could be run directly on the data store. At the
same time, loading the entire data into the data store and indexing
it could easily take a day. The new system, therefore, stores all data
(intermediate and final) in files on the hard drive, which has the
advantage that intermediate results can be inspected and re-used.
Data formats.Wikidata exists in the “full” version and the “truthy”
version13. While the truthy version is much smaller, we need the
full version to extract time stamps for facts (a feature YAGO has had
since Version 2 [27]). One has the choice between the NT format
(easier to parse) and the Turtle file (smaller by a factor of 2), and
our choice falls on the latter. The file can be downloaded as BZ2
and GZIP, and we strongly recommend the GZIP version. First,
the unpacking is much faster (in the order of hours instead of the
order of days in our case). Second, BZ2 allows no way of seeing
the compressed file size without unpacking it. Finally, GZIP files
can be processed sequentially by Python without unpacking them.
For parsing Wikidata, we experimented with RDFlib. However, the
library failed for certain characters in URIs, which caused an unre-
coverable abortion in the middle of the parsing. Furthermore, the
generation of URIs (expanding the prefixes) causes a large overhead.
Therefore, we wrote our own Turtle parser and graph database,
which, for our limited application, turned out to be rather simple
(500 lines of code). These design choices mean that our code does
not use any external libraries.

While our initial input (Wikidata and schema.org) is in Turtle,
we chose TSV as our intermediate file format, because it allows for
much faster parsing. In addition, we can attach more information
to each fact (time stamp, source, etc.) in the form of supplementary
columns.
Data processing. Our system proceeds in 6 sequential steps. Each
step reads the output files of the previous step, and produces new
output files, as in [9]. Each of these steps can be run on its own,
and each of the steps has its own set of test input files with gold-
standard output files, which we can use to check if the step works
as expected.

Two of our steps need to process the entire Wikidata file, which
is done in parallel. We experimented with Python multithreading,
only to find that, due to the Global Interpreter Lock, it does not
fully utilize multiple processor cores for CPU-bound tasks. The
correct construction is multiprocessing, which uses one processor
per process. Since processes cannot efficiently share data, each
process has to load a copy of the data that it needs. Each process
writes out its results to its own temporary file, which we then merge
with the others. Each process 𝑖 of the 𝑛 processes starts at position
(𝑖 − 1)/𝑛 × 𝑁 of the Wikidata file (where 𝑁 is the size of the file).
From that position on, the process scrolls forward to the next item

13https://www.wikidata.org/wiki/Wikidata:Database_download
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declaration, where it starts its work. It proceeds until it hits the item
declaration that follows position 𝑖/𝑛 × 𝑁 . Since the file is UTF-8
encoded, the initial position may hit the middle of a character that
is encoded by more than one byte. This is not a problem because the
UTF-8 standard can distinguish the middle-bytes from the initial
bytes in an encoded stream.
Steps.We generate YAGO on a Unix machine with 90 CPUs and
800GB of RAM. We proceed in 6 steps:
1. Create schema: The manual definition of the schema is loaded,
and the relevant parts of the Schema.org-taxonomy are extracted,
as described in Section 3.3. This process operates only on man-
ually defined files and hence terminates on our machine in less
than a second.

2. Create taxonomy: Wikidata is parsed for classes, and a loop-
free taxonomy is constructed, as described in Section 3.4. This
step is parallelized and takes 4 hours.

3. Create facts: Wikidata is parsed for facts, each predicate is
mapped to a YAGO predicate as described in Section 3.6, the sub-
ject of the fact is type-checked, and the objects are type-checked
if they are literals. The objects that are not literals cannot yet
be type-checked because we do not yet have a complete list of
all instances at this stage. This step, likewise, is parallelized and
takes 4 hours.

4. Type-check facts: The previous step has given us a list of facts,
which also contains the class that each instance belongs to. We
load this list into memory and run through all facts to type-check
the object of each fact. This step runs on YAGO data, and not on
Wikidata, and thus does not need parallelization. It takes 1:30h
to run.

5. Create ids: Among those facts that survived the type check,
we map each entity to its legible YAGO name, as described in
Section 3.6. This takes one hour.

6. Create statistics: Debugging and testing are an integral part of
the development. The last step counts the number of instances
per class and of facts per predicate. It creates a visualization of the
taxonomy and a random selection of entities for manual check.
This process also takes one hour.

Thus, the overall process takes about 12 hours.

5 RESULT
5.1 Resource
Size. Table 1 shows the statistics of YAGO 4.514 and puts them in
perspective with Wikidata and YAGO 4. Both versions of YAGO
have vastly less predicates than Wikidata. As explained previously,
this is deliberate: according to Design Principle 3 (Section 3.2),
YAGO accepts only those predicates that are defined in its schema.
That said, YAGO 4.5 does cover most of the 100 most frequent
predicates of Wikidata (see Section 3.6). When we now turn to
compare the two versions of YAGO, we see that YAGO 4.5 has
fewer properties than YAGO 4. This is due to the removal of inverse
properties, which we removed under Design Principle 2 (e.g., we
removed hasParent because we already have hasChild; 6 such cases);
properties related to scholarly articles (citation etc., 4 in total, which
we removed according to the discussion in Section 3.4); biochemical

14Version yago-4.5.0.2

Wikidata YAGO 4 YAGO 4.5

Entities 103M 67M (37M) 49M
of which generic 0 0 62k
Classes 2.8M 10k 133k
Predicates 11k 140 (124) 108
Facts 500M 343M (89M) 132M
Type facts 106M 70M (33M) 53M
Label facts 795M 303M 479M
Meta facts 12M 2.5M 7M
Dump size 766GB 280GB 142GB

Table 1: Size of YAGO 4.5. Facts exclude type, label, com-
ment, alternateName, sameAs, andmainEntityOfPage facts.
In brackets: without redundant properties, properties de-
scribing literals, and properties describing scholarly articles.

properties (11 in total, removed because of a lack of expertise in
our team); and properties of numerical literals (value etc., 6 in total,
removed because literals became simple values in YAGO 4.5). The
loss is thus deliberate. A detailed comparison of the properties in
YAGO 4, YAGO 4.5, and Wikidata is in our design document11. The
same goes for the facts of YAGO 4: 238M facts describe scholarly
articles (mainly citations, pagination, and publication dates), 13M
facts describe literals and 2.5M facts are redundant because of an
inverse property. If these are discarded, the new YAGO contains
slightly more facts. The dump size is still smaller because we use
the Turtle file format instead of NT. Concerning the classes, the
picture is as rosy as intended: YAGO 4.5 has vastly more classes.
Data Format. The final file format of YAGO is Turtle. We separate
the subject, predicate, object, and dot by a tabulator, so that our
files are de facto also TSV files. YAGO is split into the following
files:
• Schema: upper taxonomy, property definitions, and SHACL
constraints.

• Taxonomy: the entire taxonomy of YAGO (all subClassOf
facts).

• Facts: all facts about entities that have an English Wikipedia
page.

• Beyond Wikipedia: all facts about other entities.
• Meta: all temporal annotations (in the RDF-star file for-
mat [26]).

Downstream applications can load only the files they need, and
exclude, e.g., meta facts or facts about entities that do not have an
English Wikipedia page.

5.2 Evaluation
Intrinsic evaluation. To evaluate the quality of the new KB, we
draw inspiration from the criteria for ontology evaluation that a
recent survey identified [77]: consistency refers to the absence of
logical contradictions. For this purpose, we verified the logical con-
sistency of YAGO using the OWL API15 and Pellet [69], an OWL
DL reasoner for Java, in 4 hours. Additionally, we validated the
15https://owlcs.github.io/owlapi/
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Criterion Operationalization Wikidata YAGO 4 YAGO 4.5

Consistency Absence of contradictions no yes yes
Complexity Top-level classes 41 2714 9

Number of paths to root 44 1.1 2.3
Modularity Disjointness axioms 0 18 24
Conciseness Taxonomic loops 62 0 0

Redundant taxonomic links 377k 1216 0
Redundant relations 118 6 0
Classes without instances 2.6M 73 0

Understandability Human-readable names 0% 89% 91%
Coverage Classes per instance 8.4 3.6 7.8

Facts per instance 4.8 5.1 2.7
Table 2: Quality measures, inspired by [77]

SHACL shapes with Jena SHACL16 in 1h30. Complexity refers
to the extent to which the ontology is complicated. We propose
to measure it (1) by the number of top-level classes (i.e., the num-
ber of direct subclasses of Thing; the fewer the better), and (2) by
the average number of paths from an instance to the root in the
taxonomic tree (the fewer the better). Modularity is the degree
to which the ontology is composed of discrete subsets. In our case,
these subsets are the disjoint classes, and we report the number of
(non-redundant and actively enforced) class disjointness statements
as an indicator. Conciseness requires the absence of redundancies,
and we count the number of taxonomic loops, taxonomic links
that are redundant because of transitivity, and relations whose in-
verse also exists. Understandability is the degree to which the
ontology can be comprehended. This is difficult to operationalize,
but we can at least report the percentage of identifiers that have
human-readable names. Coverage refers to the degree to which
the ontology covers the domain knowledge. We report the number
of classes and facts per instance (excluding labels etc.).

Table 2 shows these measures for YAGO 4, YAGO 4.5, and Wiki-
data. The latter has vastly more facts per instance than YAGO. This
is to be expected, as YAGO is a clean subset of Wikidata. YAGO 4,
too, has more facts per instance than YAGO 4.5. However, this is
mainly due to the 174M facts about citations for 40M scholarly arti-
cles. YAGO 4 also has a lower number of paths to the root, which
is due to its sparse taxonomy. On all other measures, YAGO 4.5
scores much better than both YAGO 4 and Wikidata: it has a clean
upper-level taxonomy of just nine top-level classes – instead of the
dozens of Wikidata or the thousands that YAGO 4 attached to the
taxonomic root for lack of good intermediate classes. YAGO 4.5
is also free of all types of redundancy that plagued Wikidata and
YAGO 4. On average, there are just 2.6 paths to the root, as opposed
to 44 in Wikidata (not accounting for cycles). At the same time,
YAGO 4.5 nearly replicates the taxonomic richness of Wikidata,
with 7.8 classes per entity – twice as many as in YAGO 4.
Extrinsic evaluation. To show the value of the new YAGO 4.5 over
YAGO 4, we applied it to the task of entity disambiguation (also
called entity linking). Given a KB and a text that contains an entity
mention, the task is to link it to the corresponding entity in the KB.

16https://jena.apache.org/documentation/shacl/

[1, 5) [5, 10) [10, 20) [20,∞) Macro
samples 13971 3452 1374 203 19000

YAGO 4 77% 59% 53% 20% 52%
YAGO 4.5 80% 64% 58% 31% 58%

Table 3: Disambiguation accuracy by candidate mention.

This task is important for analyzing large document sets such as the
Panama Papers17 or newspaper archives [19], and it is useful also in
information retrieval [44, 80]. Entity disambiguation is particularly
difficult with ambiguous entity names. For example, in “I love the
city of light, Paris”, the word “Paris” could refer to the capital of
France, but also to several dozen cities of that name in the US, not
to mention people of that name such as Paris Hilton or the Greek
hero Paris. We use the BLINK [79] dataset, which is based on a 2019
English Wikipedia dump. We collect 19 thousand samples from this
dataset in such a manner that (1) every mention appears only once
(so that there is less bias towards popular entities), and (2) all entities
exist in both YAGO 4 and YAGO 4.5. For each entity mention, we
collect the possible candidate entities by finding all entities that
share a label with the mention. We use the end-to-end entity linking
system ExtEnD [6], pre-trained on Longformer [8]. It takes as input
a single piece of text, which consists of the input text concatenated
with the separator [SEP] and a sequence of entity candidates. Each
entity candidate is given in textual form. For our experiments, we
use the main label of the entity, followed by the classes of which
the entity is an instance. In our example, we produce “I love the city
of light, Paris [SEP] Paris [capital, city, place]; Paris Hilton [singer,
actress, human]; ...”. Then, the system indicates the start and end
token of the span containing the predicted entity candidate.

Table 3 shows the accuracy of the disambiguation, grouped by
the number of candidate entities per mention. The disambiguation
works much better on YAGO 4.5 – especially on mentions that
have many candidates. This shows the usefulness of the new YAGO
taxonomy. All code and data of this study are publicly available18
for reproducibility.

17https://medium.com/@ambiverse
18https://github.com/tigerchen52/eval_yago_el/
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5.3 Applications
Benchmarking. Previous versions of YAGO have been widely
used as benchmark datasets in entity type prediction [29] and link
prediction [24]. YAGO43KET [49] is a benchmark dataset for entity
type prediction, which has been created from the subset of YAGO
3.0. It contains 43k entities with their type information. YAGO3-10
is a benchmark for link prediction that consists of all entities of
YAGO 3.0 having at least 10 predicates [18]; it consists of 120k
entities (mainly people) and 37 predicates. YAGO11K [16] is also a
subset of Yago 3.0, and it is used to evaluate algorithms for temporal
link prediction [36, 78] and temporal relation prediction [13].
YAGO in InformationRetrieval. YAGO is helpful for Information
Retrieval (IR) systems in order to enhance their understanding of
queries and documents beyond the scope of word tokens and plain
texts [64]. YAGO can help IR mainly in two applications: Document
Retrieval and Entity Retrieval. Document retrieval is the task of find-
ing relevant textual resources for a given user query. Several works
leverage entity information from YAGO to expand queries, incor-
porating rich features into the retrieval process [17, 58]. Another
approach uses YAGO ontology to construct document summariza-
tion tools, aiding in the efficient retrieval of key information from
extensive document collections [5]. Facts in YAGO can also be
used to represent both queries and documents, facilitating semantic
search in information retrieval [15, 20]. Entity Retrieval aims to
retrieve and rank entities in a document collection (or a knowledge
base). Several benchmarks for entity retrieval are derived from
YAGO [12, 28, 51]. Existing studies rely on information in YAGO to
retrieve various entities, including geographic entities [62], Point
of Interest (POI) entities [14], and temporal scopes of entities [30].
Other Applications. The YAGO KB has found quite a number of
other applications in the past [63]. Together, the YAGO publications
have been cited more than 10,000 times in total so far, according
to Google Scholar. As every user is free to download the KB and
to use it (or not), we do not have an overview of the projects that
use YAGO. We just know that the KB (in various versions) has been
downloaded about 6000 times during the past year (heuristically
excluding bots). YAGO 4.5 can be plugged in as-is into any system
that uses YAGO 4 (as is currently happening with Qlever [7]). We
expect our YAGO 4.5 to be even more useful than YAGO 4, as it pro-
vides fine-grained information about instances by the new classes.
This will be useful to any application that draws on classes: entity
retrieval, semantic annotation of documents, graphical exploration
of instances, similarity computations of entities, of documents, or
of queries and documents, and, as shown, entity disambiguation.
Availability. YAGO 4.5 is available on the YAGO Web site19. It
contains download links for the data, the Design Document that
details the mapping of schema.org to Wikidata, the documentation
of the data format, the list of publications, and the names of the
contributors. The Web page also offers an interactive browser for
the KB (loaded with a subset of the entities). A SPARQL endpoint
is provided20. The URIs of YAGO 4.5 are dereferenceable. YAGO 4.5
is available with Creative Commons Attribution-ShareAlike Li-
cense (as imposed by the license of schema.org). The source code

19https://yago-knowledge.org
20https://yago-knowledge.org/sparql

of YAGO 4.5 is available via GitHub21 under a Creative Commons
Attribution license.

6 CONCLUSION
In this paper, we have presented a method to merge the Wikidata
taxonomy with the taxonomy of Schema.org, giving rise to a new
version of the YAGO knowledge base, YAGO 4.5. Our work adds
a rich layer of informative classes to YAGO, while at the same
time keeping YAGO logically consistent. Going beyond YAGO, we
have introduced, discussed, and justified several design principles
that can be of use for other KB projects as well, most notably
concerning the choice between properties vs classes, of properties
vs inverse properties, and the modeling of fictional entities. We
have also described implementation experiences that can help other
researchers who work on Wikidata.

Several open challenges remain: first, we did not include the
classes of BioChemEntities and MedicalEntities. These can be added
in the future as a domain-specific extension. Now that the general
framework is in place, more upper classes and properties can be
defined. An interesting avenue of research in this direction would
be the (automated) translation of textual class descriptions (such
as de facto embassy (Q5244910)) into logical properties and con-
straints [38]. This would require a better understanding of com-
monsense statements [57]. Another challenge is the maintenance:
while the code can be rerun on newer versions of Wikidata, the
manual mapping of classes might have to be adapted if the upper
taxonomy of Wikidata changes – as in previous versions of YAGO.
Constraints, too, are currently defined manually. They could be
mined automatically instead [22, 45, 55, 61]. The automated mainte-
nance of structured data and its schema is an interesting challenge
for the research community as a whole.
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