
Inside YAGO2s: A Transparent
Information Extraction Architecture

Joanna Biega, Erdal Kuzey, Fabian M. Suchanek
Max Planck Institute for Informatics, Saarbrücken, Germany

ABSTRACT
YAGO[10, 6] is one of the largest public ontologies con-
structed by information extraction. In a recent refactoring
called YAGO2s, the system has been given a modular and
completely transparent architecture. In this demo, users can
see how more than 30 individual modules of YAGO work in
parallel to extract facts, to check facts for their correctness,
to deduce facts, and to merge facts from different sources. A
GUI allows users to play with different input files, to trace
the provenance of individual facts to their sources, to change
deduction rules, and to run individual extractors. Users can
see step by step how the extractors work together to com-
bine the individual facts to the coherent whole of the YAGO
ontology.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
YAGO, Information Extraction, Ontologies

1. INTRODUCTION
Recent years have seen a rise of large-scale information

extraction projects: NELL[3], PROSPERA [8], SOFIE [11],
and TextRunner[2] extract facts from natural language Web
documents, DBpedia [1] and YAGO [10, 6] extract from
Wikipedia pages, and several commercial endeavors have
started exploring the area, too. TrueKnowledge1, Freebase2,
and Google’s Knowledge Graph, among others, all extract
information from Web sources. These systems usually take

1http://trueknowledge.com
2http://freebase.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Web pages as input, and produce a knowledge base (KB)
as output. The KB is a set of facts, such as e.g., “Elvis
Presley was born in Tupelo”. The facts are usually repre-
sented in the RDF format or in a similar format, mean-
ing that every fact is a triple. A triple is a statement of
a subject, a predicate, and an object. In the example, the
triple is 〈Elvis Presley, bornIn, Tupelo〉. Today’s KBs con-
tain millions of such triples about a wide variety of entities.
They know, e.g., which cities are located in which countries,
which actors played in which movies, and which scientists
won which award.

While some knowledge bases extract their data from ar-
bitrary Web pages, the YAGO project extracts its data ex-
clusively from a handfull of predefined sources. YAGO also
works only on a manually predefined set of relations. In re-
turn, the facts in YAGO have a very high precision. A man-
ual evaluation[10, 6] has confirmed that 95% of the triples
in YAGO are correct.

Achieving this correctness is no simple task, because
YAGO draws from few, but very different sources. The sys-
tem extracts and merges information from Wikipedia, Word-
Net, Geonames, the Universal WordNet, and WordNet Do-
mains. Facts have to be extracted from the Infoboxes, the
categories, and the full text of Wikipedia, and reconciled
with conflicting, duplicate, or complementary facts from the
other sources. Entities have to be mapped and dedupli-
cated, and class hierarchies have to be merged and com-
bined. In addition, a suite of verifications has to be ap-
plied to make sure that domain- and range-constraints are
respected, that functional relations have no more than one
object for any given subject, and that the types of an entity
are coherent with each other. This entire process takes sev-
eral days to run. Furthermore, the YAGO team has steadily
grown, which requires a careful distribution of responsibili-
ties. Apart from this, more than a dozen researchers at our
institute work directly or indirectly on the knowledge base.

To adapt to these conditions, we have taken a radical step,
and refactored the YAGO system architecture from scratch.
The new system is a transparent and modular architecture
of over 30 independent extraction systems, each of which is
handled by one or two responsibles. This way, our archi-
tecture allows us to collaboratively develop our knowledge
base. The extraction systems work in parallel to generate
the YAGO ontology. Even though the extractors are inde-
pendent, the overall architecture is designed in such a way
that it enforces the consistency and uniqueness of the facts.
Thus, even though the facts are extracted from different
sources by different systems, the result is a coherent and

http://trueknowledge.com
http://freebase.com

consistent whole.
With the present demo proposal, we would like to show

this architecture in a playful and interactive fashion. Our
purpose is two-fold: First, we believe that the architecture,
as well as many of its components, can inspire other in-
formation extraction projects that face the same challenges.
Second, we would also like to receive feedback and proposals
for improvement of our own system from the demo visitors.
For these reasons, we have developed a novel, graphical, in-
teractive version of the YAGO system. Users can play with
the system “in vivo”, try it out on toy examples, inspect or
modify inputs or outputs of the systems, show fact prove-
nance, and run individual components. We believe that this
experience could provide inspiration for both the visitors
and our own team.

2. THE YAGO2S ARCHITECTURE
YAGO. The YAGO[10] system extracts information from
several sources. The titles of articles in Wikipedia contribute
the entities of YAGO. The categories of Wikipedia arti-
cles are analyzed to derive the type of the entities. The
infoboxes are parsed to extract facts about the entities.
WordNet[5] delivers the taxonomic backbone of the ontol-
ogy. With YAGO2 [6], more geographic entities were merged
into YAGO from the Geonames gazetteer3. This version
also gave the ontology a spatial and a temporal dimen-
sion. YAGO also became multilingual by help of class labels
from the Universal WordNet (UWN)[4]. YAGO uses its own
knowledge to check the consistency of newly extracted facts.
All facts are automatically checked with respect to the type
signature of their relations, and with respect to function-
ality constraints. Both facts and entities are deduplicated.
All entities are required to have at least one type, and the
system enforces the types of an entity to be compatible with
each other.
YAGO2s. We have completely refactored the YAGO sys-
tem into a transparent and modular architecture. The refac-
tored version of YAGO is called YAGO2s. The main ingre-
dients of the new architecture are themes and extractors.
A theme is a collection of facts, such as all facts extracted
from Wikipedia infoboxes, all facts derived from WordNet,
or all facts that concern people. A theme is stored in a file.
We took the opportunity to make the syntax of YAGO facts
completely RDF compliant, and store facts in the Turtle
format. In order to attach time and space information to
facts, YAGO uses fact identifiers [6]. In the Turtle format,
we store these fact identifiers in commented lines before the
facts. This allows advanced applications to deal with tem-
poral and spatial information, while still allowing standard
RDF applications to load and consume the files.
Extractors. An extractor is a module of code, which takes
a number of themes as input, and produces a number of
themes as output. For example, one extractor is the dedu-
plicator, which takes a number of themes as input, and
produces one theme with the deduplicated facts as output.
Other extractors check types, verify functional constraints,
or merge information. Some extractors also extract informa-
tion from an external data source. These extractors take a
raw data file as an additional input. The Wikipedia category
extractor, e.g., takes as input the XML dump of Wikipedia
and produces a theme with facts extracted from Wikipedia

3http://www.geonames.org

categories. Similar extractors exist for WordNet, UWN, and
Geonames. We also added an extractor for WordNet do-
mains[7]. The WordNet domains give YAGO a thematic
structure of topics, such as “music”, “law”, and “emotions”.
Therefore, it is now possible to ask for all entities related to,
e.g., “music”.
Scheduling. An extractor can only be run once its in-
put themes have been produced. This constraint yields a
dependency graph, in which some extractors have to run
before others, and some can run in parallel. We have de-
signed a scheduler that respects these dependencies. Of the
30 extractors, up to 14 run in parallel, producing around
80 themes in 4 days on a 8-core machine. The interplay
of data extractors and verifying extractors ensures that all
facts that make it into the final layer of the architecture
have been checked for consistency and uniqueness. To-
gether, the themes of the final layer constitute the YAGO
ontology. These themes group the facts thematically, so
that facts about multilingual labels, facts about literals, and
facts about inter-ontology links, e.g., all appear in different
themes. The final themes can be downloaded separately, so
that users can download just what they need (“YAGO à la
carte”). In a previous demo proposal at a national confer-
ence [9], we have presented a flight planner that makes use
of this new architecture by adding a new extractor mod-
ule. However, the new architecture itself has neither been
published as a full paper nor as a demo.

3. THE YAGO2S DEMO

3.1 GUI
Visualization. Our demo proposal visualizes the YAGO
architecture as a bipartite graph of themes and extractors.
The graph is dynamically created from the actual registered
extractors. Figure 1 shows the entire graph in miniature to
give an impression of the structure of the graph. The circles
are extractors, the boxes are themes, and the smaller boxes
are data sources. The lines show which extractor produces
which theme, and which theme is used by which extractors.
This graph constitutes our GUI. Users can zoom in and out
to discover different types of extractors and their dependen-
cies. Figure 2 shows a zoom on one particular extractor, the
Wikipedia Type Extractor.
Extractors. There are 4 main groups of extrac-
tors: Wikipedia Extractors are concerned exclusively with
Wikipedia. All of them take Wikipedia as an external
data source. Geonames Extractors harvest and map entities
from Geonames. External Extractors extract from external
sources other than Wikipedia and Geonames, such as Word-
Net, WordNet Domains, and UWN. Theme Extractors take
no external data sources, and operate just on themes. These
extractors deduplicate, merge, and check constraints. Some
extractors (such as the Type Checker) are instantiated mul-
tiple times, so that the overall graph contains 46 extractors.
Themes are not replicated. They exist only once and are
accessed in parallel by the extractors that consume them.
Implementation. The architecture graph is represented in
the Scalable Vector Format (SVG), so that it can be conve-
niently displayed and zoomed in a browser. A static version
of this image is also available online at http://mpi-inf.

mpg.de/yago/demo. The backend system is programmed in
Java, with the interactive part running as a local TomCat
server and the dynamic interface written in JavaScript.

http://www.geonames.org
http://mpi-inf.mpg.de/yago/demo
http://mpi-inf.mpg.de/yago/demo

Figure 1: The dependency graph of YAGO2s

Wikipedia.xml

WikipediaType

Extractor

WordNet

Words

Wikipedia

Types

Figure 2: A zoom on Figure 1

3.2 Basic Functionalities
Our GUI not only visualizes the architecture, but also lets

the user interact with it. Each theme, and each extractor
has a context menu. These support the following operations:
Preview Themes. The user can choose to explore the
facts contained in a theme. Since YAGO contains general-
purpose facts, the themes can be easily understood. Some
contain person names, others contain geographic informa-
tion, and others again contain multilingual labels for entities
or classes.
Display Theme Dependencies. The user can highlight
all extractors that use a certain theme. Some themes are
used by only one extractor, whereas others have more intri-
cate dependencies. Some themes are used by more than a
dozen extractors. There is one theme, yagoSchema, which
defines the schema of the ontology. It contains the names
of the relations, their domains and ranges, and the top-level
classes of YAGO. This theme is used by virtually all extrac-
tors. This ensures that the entire system operates on the
same relation definitions.
Display Extractor Dependencies. The user can high-
light the subgraph of elements (extractors and themes) that
depend on a certain extractor. For example, facts produced
by the Infobox Extractor are first checked for redirects, then
verified by the type checker, then fed into a rule deduc-
tion mechanism, and finally merged with the other facts and
deduplicated.

Display Extractor Input. The user can highlight all in-
put themes and data files required by an extractor. Due to
complex dependencies, these may be quite scattered in the
graph.
Run Extractors. The user can decide to run an individ-
ual extractor. Since we plan to operate mostly on toy data
during the demo, each extractor will run in a few seconds.
This allows for a tight loop of interaction where the user can
modify the input and run chosen extractors to see how facts
trickle through the system or get intercepted.
Modify Data Sources. One can preview data sources
that the system shall run on, inspect them, and even mod-
ify them. For instance, the user can choose to run the
Wikipedia extractor only on a specific Wikipedia page. The
user can modify the information on the Wikipedia page or
introduce inconsistent data to see how the system handles
it.
Modify Themes. The same flexibility is available for the
themes. The user can modify intermediate themes and see
how this affects the ouput. Of particular interest are the
themes that define the schema of YAGO, the extraction pat-
terns for Wikipedia, and the themes that define the deduc-
tive rules of YAGO. A reset button will always return the
system to its pristine state.
Display Provenance. If users wish to know how a certain
fact emerged, they can ask the system for the provenance
of this fact. This will display the path of the fact from the
final themes through the checkers and verifiers up to the
data sources. Some facts can come from multiple sources,
yielding a tree in the visualization. Others are filtered out
on the way.

3.3 Demo Scenarios
Our running example is Ronaldo, the footballer from Rio

de Janeiro. We will run our extractors on his Wikipedia
page only. We will focus on facts about the prizes he got
during his football career (relation hasWonPrize).
Simple Extraction. As a first example, we propose to run
the Category Extractor. It will find 3 hasWonPrize facts in
the categories of Ronaldo’s Wikipedia page:

〈Ronaldo, hasWonPrize, European Footballer of the Year〉
〈Ronaldo, hasWonPrize, FIFA World Player of the Year〉
〈Ronaldo, hasWonPrize, World Soccer Magazine Player〉

The next extractor in the line is the Redirector. It takes care
of Wikipedia redirects, so that facts will have canonical en-
tities. In our example, the entity European Footballer of the
Year will be redirected to the entity Ballon d’Or. The next
extractor to be run is the type checker. The type checker
validates the facts by the domain and range constraints of
the relation. In our example, the type of the entity World
Soccer Magazine Player is not known to YAGO. Hence, the
type checker will eliminate this fact. Thus, the result of the
process is

〈Ronaldo, hasWonPrize, Ballon d’Or〉
〈Ronaldo, hasWonPrize, FIFA World Player of the Year〉

Editing the input. The user can edit the Wikipedia
page and introduce new facts. In our running example,
the user can add the following line to the infobox of the
Wikipedia page: “awards=[[European Golden Shoe]]” When
the Infobox Extractor is run, its output will contain the fact
〈Ronaldo, hasWonPrize, European Golden Shoe〉.

Tricking the system. The user can also introduce noisy,
inconsistent or wrong data on the page, and see whether the
system is robust enough to deal with it. The user can, e.g.,
add the following line to the infobox:

“awards= [[European Golden Shoe]], [[FIFA]], 2002”

The Infobox Extractor will not extract 2002 as an award,
because it is of the wrong syntactic type. However, it will
assume that FIFA is an award that Ronaldo won, 〈Ronaldo,
hasWonPrize, FIFA〉. The subsequent Type Checker will
determine that FIFA is not an award, and it will eliminate
this fact, so that only the European Golden Shoe remains as
an award.

The user can also add inconsistent categories to the page.
For example, the user can state that Ronaldo is in the cat-
egory Cities in Italy. The Type Extractor will detect the
anomality of this category: It is not a subclass of person,
like all the other categories of Ronaldo. Thus, the Type Ex-
tractor will not extract 〈Ronaldo, rdf:type, city〉. However,
the Category Extractor will be tricked into assuming that
Ronaldo is located in Italy, 〈Ronaldo, locatedIn, Italy〉. The
subsequent Type Checker will remark and remove that fact.
Changing the YAGO schema. Another interesting in-
teraction is to modify the themes that define the schema
of YAGO. If the user declares, e.g., a relation as a func-
tion, then the system will extract at most one fact of that
relation per subject. To illustrate, if the non-functional re-
lation hasWonPrize is changed to be functional, then only
the fact 〈Ronaldo, hasWonPrize, Ballon d’Or〉 will be ex-
tracted. Moreover, the user can add a totally new relation
to the schema, together with the domain, range, and the
type of the relation. If she wants to see the contests that
Ronaldo won, she can simply add the new relation hasWon-
Contest. She should define the domain as person, and the
range as contest. Then, if there is any extraction rule asso-
ciated with this relation, the system will extract facts about
contest winners.
Editing the extraction rules. The extractors use
pattern-based rules to extract information from Wikipedia
pages. Our GUI allows users to edit or add new extraction
rules. For instance, if a user wants to extract facts about
contest winners, then she can add the following extraction
rule on Wikipedia categories

(.+)–winning players −→ 〈$0, hasWonContest, $1 〉

This rule says that if an article has a category that matches
the regular expression on the left hand side of the rule, then
the system will generate a fact of the form 〈$0, hasWon-
Contest, $1 〉 (where $0 is the article entity, and $1 is the
first group of the regular expression). In the example of
Ronaldo’s Wikipedia page, the rule will match the category
“FIFA Confederations Cup–winning players”, and thus gen-
erate the fact 〈Ronaldo, hasWonContest, FIFA Confedera-
tions Cup〉.
Editing the induction rules. The YAGO system imple-
ments a light-weight deduction mechanism over the facts.
For example, YAGO already has the relation participatedIn
that indicates that an entity participated in an event or ac-
tivity. In the original YAGO, there is no such fact about
Ronaldo. However, if the user introduced the relation has-
WonContest, then we can create an induction rule saying
“If someone wins a contest, then he also participated in that
contest”. The rule in YAGO format will be like

〈$0, hasWonPrize, $1 〉 ⇒ 〈$0, participatedIn, $1 〉

If the user runs the Rule Extractor, this will induce the fact
〈Ronaldo, participatedIn, FIFA Confederations Cup〉. We
provide a video of our demo at http://mpi-inf.mpg.de/

yago/demo.

4. CONCLUSION
With this paper, we propose to demonstrate the new ar-

chitecture of the YAGO extraction system. The user can
follow step by step how our system transforms the semi-
structured input of Wikipedia into fact candidates, and then
into clean and consistent RDF facts. YAGO is an example
of an extensible knowledge extraction system, where multi-
ple researchers collaborate to develop a knowledge base. We
believe that the architecture can inspire other researchers in
the area of information extraction by providing ideas for the
organization and building blocks of ontology construction.
We anticipate that the demo would be of particular interest
to researchers in the area of database provenance, because
YAGO is a system that uses and generates provenance infor-
mation. We also hope that this demo will encourage visitors
to give feedback on our system, to point out weaknesses of
the extractors, and to propose new extractors. This will
allow us to make YAGO ever more useful.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. G. Ives. DBpedia: A nucleus for
a Web of open data. In ISWC, 2007.

[2] M. Banko, M. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open Information Extraction from the
Web. In IJCAI, 2007.

[3] A. Carlson, J. Betteridge, R. C. Wang, E. R. H. Jr.,
and T. M. Mitchell. Coupled semi-supervised learning
for information extraction. In WSDM, 2010.

[4] G. de Melo and G. Weikum. Towards a universal
wordnet by learning from combined evidence. In
CIKM, 2009.

[5] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[6] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum. YAGO2: a spatially and temporally
enhanced knowledge base from Wikipedia. Artificial
Intelligence Journal, 2012.

[7] B. Magnini and G. Cavaglia. Integrating subject field
codes into wordnet. In LREC, 2000.

[8] N. Nakashole, M. Theobald, and G. Weikum. Scalable
knowledge harvesting with high precision and high
recall. In WSDM, 2011.

[9] F. M. Suchanek, J. Hoffart, E. Kuzey, and
E. Lewis-Kelham. YAGO2s: Modular High-Quality
Information Extraction with an Application to Flight
Planning. In German Database Symposium (BTW
2013), 2013.

[10] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:
A core of semantic knowledge. Unifying WordNet and
Wikipedia. In WWW, 2007.

[11] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A
Self-Organizing Framework for Information
Extraction. In WWW, 2009.

http://mpi-inf.mpg.de/yago/demo
http://mpi-inf.mpg.de/yago/demo

	Introduction
	The YAGO2s Architecture
	The YAGO2s Demo
	GUI
	Basic Functionalities
	Demo Scenarios

	Conclusion
	References

